
X

MSIX Packaging Fundamentals - Table of Content

 Powered by AdvancedInstaller.com 1

Contents
About the Authors .. 3

Introduction to Modern Applications .. 5

Modern, and other, Application Forms .. 6

The Purpose of Packaging... 6

Handling Dependent Reusable Components ... 7

The Techniques of Application Packaging ... 9

The Traditional Software Installer ...10

On Spoofs, Redirections, and Overlays ...11

Moving Towards MSIX ...15

MSIX Technology Fundamentals ..17

What is MSIX...17

Microsoft Documentation and Community Sites52

OS Version vs MSIX Functionality ...55

MSIX Tooling for IT Pros & Developers ..58

Microsoft MSIX Packaging Tool ...58

PsfTooling ...61

Advanced Installer Express ...63

AdminStudio ...65

MSIX Commander ..66

MSIX Hero ...67

Additional MSIX Packaging Tools ...68

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Table of Content

 Powered by AdvancedInstaller.com 2

Fundamental Packaging Concepts ...71

Digital Signing ...71

Package Support Framework ..76

Scripting ..98

MSIX Modification Packages ... 101

Application Updates .. 111

User Settings and Data Associated with a Package 113

Fundamental Deployment Concepts ... 115

Deployment File Types for MSIX .. 118

MSIX Package Installations .. 119

Using the App Installer App .. 131

Installing MSIX with PowerShell ... 136

Deployment with DISM .. 147

Provisioning Packages .. 150

MSIX and the Windows Store ... 154

MSIX and the App Installer File .. 158

Configuration Manager and MSIX Deployment 167

Using Intune with MSIX ... 176

VDI Meets MSIX with App Attach ... 182

MSIX and App Center .. 186

How Tos ... 187

How To: Setting up a recapture VM ... 187

How To” Common packaging scenarios ... 190

Going Forward ... 199

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - About the Authors

 Powered by AdvancedInstaller.com 3

About the Authors

Tim Mangan

Tim is one of the most known and respected professionals in the

packaging industry, awarded as Most Valuable Professional (MVP) by

Microsoft in Application Virtualization for the last 12 years, as well as a

Citrix CTP Fellow for lifetime achievements, is an author of multiple

books, trainer, and consultant. He is currently contributing to the

industry through his own company TMurgent Technologies, building

products and providing support about application virtualization.

You can have a piece of Tim’s knowledge on TMBlog1.

Bogdan Mitrache

A skillful product management professional with proven experience in

the computer software industry, Bogdan Mitrache is the VP of Product

of Advanced Installer. He is involved in all aspects of the organization

and uses his deep understanding of the packaging and deployment

technology to empower the Advanced Installer team to build critical

educational resources and tools for IT professionals and developers.

Bogdan is obsessed with MSIX and has authored multiple articles on

the Advanced Installer Blog2.

1 https://www.tmurgent.com/TMBlog/
2 https://www.advancedinstaller.com/blog/page-1.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.tmurgent.com/TMBlog/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/blog/page-1.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - About the Authors

 Powered by AdvancedInstaller.com 4

Kevin Kaminski

With over 20 years of experience with Microsoft technologies ranging

from device management to the data center, today Kevin Kaminski is a

knowledgeable Windows expert that shares his hands-on experience

through training and consulting.

Also recognized by Microsoft as MVP for Windows and Devices for IT,

his work now focuses mainly on modern management using Microsoft

Endpoint Manager.

Check out the latest news from Kevin at Check Your Logs - Kevin

Kaminski3.

Special thanks to other expert contributors:

Alex Marin4

Horatiu Vladasel5

Radu Popescu6

3 https://www.checkyourlogs.net/author/kkaminski/
4 https://www.advancedinstaller.com/authors/alex-marin.html
5 https://www.advancedinstaller.com/authors/horatiu-vladasel.html
6 https://www.advancedinstaller.com/authors/radu-popescu.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.checkyourlogs.net/author/kkaminski/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.checkyourlogs.net/author/kkaminski/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/authors/alex-marin.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/authors/horatiu-vladasel.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/authors/radu-popescu.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Introduction to Modern Applications

 Powered by AdvancedInstaller.com 5

Introduction to Modern

Applications
As an ever-evolving art, we constantly struggle to apply discipline and

semi-automated tools to produce successful and timely deployments

for end-users. Hence why we gathered some experienced colleagues

and industry connoisseurs to address and write a book with a specific

purpose: to help enterprises properly prepare and deliver Windows

applications.

In the sea of changes that have occurred in application deployment over

the last 20 years, perhaps the most important is the evolution of

separation. Rather than having a single entity, a hard disk filled with an

unorganized mess, today we prefer to split up the OS from the

hardware, the applications from the OS, and the data from all of the

above. We use the term “Modern Applications” to encompass several

forms of packaging, delivery, and run-time systems, which enable

application separation. Even when delivered in bundled images,

organizations today treat and manage applications as individual

components (at least for part of the process), and those processes can

be improved by applying these disciplines.

We will primarily focus on Windows Application packaging and how

companies prepare applications for their distribution and use, either

within their company or their clients' organizations. While the content of

this book is fundamentally intended as an introduction to the practices

of application packaging, we believe that it is also valuable even for the

most experienced IT Pros. We hope to help them evaluate a different

perspective that could open their way to different packaging techniques

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Introduction to Modern Applications

 Powered by AdvancedInstaller.com 6

from the ones that they are used to and understand how these

techniques fit into the larger picture.

Modern, and other, Application

Forms

Software has traditionally been provided to you from internal and

external software developers in one of the traditional forms of EXE and

MSI installers. Organizations prepare the application, customizing both

the form of delivery and the contents in ways that improve efficiencies

and end-user satisfaction.

Organizations that have moved to modern forms have most likely done

so on their own. We see that this is starting to change with MSIX, as

vendors appear to take interest in providing future applications in this

modern format. But, even when delivered in the modern format,

organizations will still need to process and configure the application for

delivery.

The modern form includes technologies such as Application

VIrtualization, Application Layering, and Application Containers (where

MSIX falls).

The Purpose of Packaging
The reason we package an application is to simplify the life of the end-

user, shielding them from things that they don’t need to be involved

with. Sometimes, it is a convenient way to hide aspects from the end-

user, such as licensing keys or back-end infrastructure details that they

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Introduction to Modern Applications

 Powered by AdvancedInstaller.com 7

do not need to know. Some of the benefits of application packaging for

companies include:

● The customization of general-purpose applications to fit the

needs of the organization.

● Increased productivity of end-users - The majority of which are

not IT Pros.

● A wider applicant pool for a given position (they don’t need to be

computer experts but know how to use the app),

● Increased security of its systems by reducing the need or use for

admin credentials.

Ultimately, the purpose of packaging comes down to reducing costs.

While certainly there are costs associated with the packaging process,

these are outweighed by the cost savings that come from simplifying a

process that allows end-users to focus on the tasks they are being paid

for - that don't necessarily include installing software and its

complications.

Handling Dependent Reusable

Components
More often than not, Application packages include dlls components that

are reusable from other parties. The most common are the Microsoft

Visual C++ runtime components (although there are many other

sources as well).

In a native installation, these components may be installed either into

system locations or in the same package folder with the application. In

the application repackaging industry, there are two different schools of

thought on how to handle these components.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Introduction to Modern Applications

 Powered by AdvancedInstaller.com 8

These two approaches are as follows:

● One is to identify dependencies, separating them for

independent delivery, and removing them from the repackaged

app.

● The second is to keep them within the repackaged app.

Although some organizations believe their approach is the right one to

use, the truth is that: there's not a one-size-fits-all method that works for

all organizations, and using only one approach may not be suitable for all

situations within any organization.

Traditionally, we worried about version conflicts when these

components were written into shared areas, a concept referred to as “dll

hell”, where installing one new application might break any of the others

on a system and you wouldn’t know unless you test all of them.

Today, different versions for most of these components are installed

into different file locations, even in a system installation, so it is less of

an issue. The problem now tends to be with older application installers

that add known flawed shared components that lack fixes for known

security vulnerabilities, and we want to ensure these are always

patched.

Organizations using Configuration Manager to deploy apps repackaged

as MSIs usually prefer the separation approach. While organizations

repackaging for an isolation environment, such as App-V or MSIX tend

to take the other approach; which takes much less work and it is less

unlikely for vulnerabilities to be exploited, especially in an isolated

environment.

We're not here to guide you through what the best approach is for you.

But, to make you aware of these choices we recommend that you follow

the approach(es) used by your organization. We can also suggest that

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Introduction to Modern Applications

 Powered by AdvancedInstaller.com 9

as you gain more experience and changes occur in the technologies we

use, the so-called “correct” approach today may not be so “correct” in

the future.

The Techniques of Application

Packaging
There are three general techniques used in application packaging.

● Automation. This encompasses techniques that do not alter the

vendor installer directly but are used to apply it. This includes

the use of scripts wrapping the application installer, as well as

the use of tools that provide additional files such as MST

Transforms.

● Conversion. Converting an installer file from one form into a new

form. This includes the use of MSI editors that produce modified

MSI files and format conversions (such as from MSI to either

App-V or MSIX) that do not require an installation capture of the

installer.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Introduction to Modern Applications

 Powered by AdvancedInstaller.com 10

● Capture/Re-packaging. Performing the installation and

customization of an application within a monitored environment

to capture the changes and produce a customized package.

As someone responsible for application packaging, you will probably

need to use a variety of these techniques over time. Your organization

will likely have selected a small subset of all of the available first and

third-party tools to help make packaging activities consistent and

reliable. The MSIX Packaging Fundamentals book will provide you the

knowledge that you need to succeed no matter what techniques or

tools are used.

The Traditional Software Installer
Software is generally provided in the form of an installer. The

installation is primarily a combination of writing files and entries into

the Windows file system, often utilizing system utilities to perform

registration activities.

Most of the software you work with comes in the form of an EXE or MSI

based installer. The MSI installer is usually preferred for packaging as it

uses a set of tables that can be easily examined and manipulated, while

the EXE-based installer tends to be less transparent. Sometimes the

EXE-based installer embeds an MSI that is used as part of the process.

But ultimately, the EXE-based installers and any custom actions

included in an MSI are binary “black boxes” that we can only understand

by watching what they do.

The purpose of the vendor installer is not only to place the appropriate

components in place on the system but also to configure the

application for the user. Often, this involves some decision-making from

the installer's side based on the environment it is being installed on.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Introduction to Modern Applications

 Powered by AdvancedInstaller.com 11

This adaptation to the environment could potentially include examining

the machine, the OS, the end-user, as well as other software on the

machine, and even the surrounding network including other servers or

services.

The role of the packager and packaging software is to end up with a

generic package that may then be deployed to any system with

organization-wide customized defaults. Special care is required when

the techniques used include a repackaging process. Issues can arise in

repackaging due to the unintentional capture of unwanted components

or configurations by the installer that are specific to the capture

machine.

The goal of any repackaging process that you are involved with
should be to produce a clean and customized package that will work
on any intended system, along with appropriate documentation that
would allow that same package to be reproduced in the future.

On Spoofs, Redirections, and

Overlays
Virtualization, Layering, and Containerization all employ similar

techniques to achieve their goals. The details of how and when these

techniques are used vary, but first, you need to have an understanding

of the basic techniques that they employ.

We will refer to them as Spoofs, Redirections, and Overlays. In essence,

Redirections are a specific form of Spoof, and Overlays are an

application of redirections, so technically, we could just use a single

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Introduction to Modern Applications

 Powered by AdvancedInstaller.com 12

term - but as we will see, there is value in separating them out into three

terms.

Spoofs

In reality, everything done in modern application runtimes falls under the

“spoof” category. We can define a spoof as something that intercepts

an action (function call, for example) and alters the requested action or

result. In MSIX terms, a Package Support Framework shim, which

intercepts a Windows API call and modifies it, implements various kinds

of spoofs.

Modern application runtimes routinely implement spoofs for file

redirection, changing a COM GUID, or renaming a semaphore for

isolation purposes.

Redirection

A particularly popular form of spoof is the redirection spoof. Used

against calls to the file system or registry, it takes a filepath or registry

key path as requested by the application and in essence, it says: “I know

you asked for this, but I’m going to give you this other thing instead”.

Fundamentally, this allows for traditional code to not know that it is not

running in a modern environment. It might think that it is installed to the

default “C:\Program Files\VendorName” folder, while all of the files are

located wherever the modern app runtime puts them.

A common use of Redirection used in several modern systems involves

a folder called VFS (for Virtual File System) along with subfolders with

specific names that refer to an equivalent “un-redirected” location. Thus

“VFS\ProgramFIlesX64\VendorName” equates to the “C:\Program

Files\VendorName” folder that the app might request.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Introduction to Modern Applications

 Powered by AdvancedInstaller.com 13

Layers

Layers are a visual analogy used to describe the concept of how the

modern runtime systems act.

The visualization we use to describe the layering concept is called

panes of glass, whereby a piece of software, depicted in the image as

an Application, sees the system through a series of glass panes. When

items are placed on a glass pane, they can add to, or replace parts of

what the application would see without them.

Illustration of a virtual application

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Introduction to Modern Applications

 Powered by AdvancedInstaller.com 14

In application runtime systems, we usually think of a model such as the

one shown above, where the application is working with three layers.

Drawn horizontally, the rightmost layer is the operating system with its

file system and registry. Just left of that is the application layer,

containing additional and/or replacement files and registry entries. The

application layer is immutable, meaning that the runtime system does

not allow changes to occur in that layer when the user runs the

application. Instead, changes to the application are made to the third

layer, shown left of it. We can call this third layer: the user settings and

data layer for that application.

This makes a nice visual, but of course, things are always more

complicated! Items written to the upper layer can be used only by the

application, and often we want settings and data to be usable outside of

this application. So while some information needs to be written to that

layer, other pieces need to be allowed to be written to system locations,

such as the Documents folder, cloud sharing folders, home drives, and

network shares. As a general rule, the runtime systems generally use

the presence of items in the application layer to make this

determination.

The layering concept is implemented by using redirections.

Redirections may be implemented in the runtime as user mode

intercepts (added to the application process by dll injection) or kernel

filter drivers. Some runtime systems employ both techniques in

different areas. In a redirection, the request by an application to perform

an operation, such as opening a file with a certain file path, is examined

and the request is redirected to a different location, which we think of

like one of those panes of glass. In reality, this is just a different

location on the system, but it is easier to just think of it as that glass

pane.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Introduction to Modern Applications

 Powered by AdvancedInstaller.com 15

Combining these techniques to solve application

challenges

While the effect of redirecting a file or registry call is simply giving the

application the best location choice, internally it is much more

complicated. Consider the following case:

● The OS has a folder with some files in it.

● The application layer has additional files in its overlay folder.

● When running the application, the end-user added a new file to

that folder or modified an existing one, from the third layer.

● If the application then makes a request to find files in that

folder, the redirection software must query folders on all three

layers to form the query reply.

Such a situation requires a combination of spoofing, redirection, and

layering and is just one example of how modernizing applications alters

what the application sees and does.

Moving Towards MSIX
Microsoft is making a major commitment with MSIX. In the future we

expect MSIX to become the preferred format for software vendors to

deliver applications to their customers, overtaking the ubiquitous MSI

during this decade. For the software vendors, it is about staying current

in their products so that they may take advantage of the new OS

features that will only become possible when writing code that runs

inside the MSIX container. For Microsoft customers, MSIX offers the

promise of simpler application customizations, secure and safe installs

and more stability for the end user.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Introduction to Modern Applications

 Powered by AdvancedInstaller.com 16

MSIX is evolving as it is being delivered. In the remaining chapters of

this book we will focus on the fundamental technology as it stands

today, look at currently available tooling. After that, we then dive into

both packaging and deployment fundamentals which should provide

you with a complete picture to work from for the future.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 17

MSIX Technology

Fundamentals

What is MSIX
Microsoft presented MSIX7 in 2018 as an improved version of the AppX

package (initially used only for UWP apps) to better support traditional

desktop applications on Windows 10. MSIX is the result of their

experience with MSI and App-V packages and the Desktop Bridge8

program.

Structure-wise, an MSIX package is very similar to an AppX or App-V

package. It is basically a zip package that contains your application files

and some configuration XML files.

While MSIX is designed to support the latest development trends, it also

comes with significant support for older Win32 (which includes

traditional x86 and x64 unmanaged-code apps and DotNet Framework-

based applications), e.g., the standard desktop applications that we’ve

been using all of these years. Now, you can package your standard

desktop application using the new MSIX format and deploy it using the

tools you already have (SCCM, Intune, etc...).

7 https://docs.microsoft.com/en-us/windows/msix/
8 https://developer.microsoft.com/en-us/windows/bridges/desktop

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/windows/msix/
https://developer.microsoft.com/en-us/windows/bridges/desktop

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 18

You can also take this new package and publish it in the Microsoft Store

or for direct download from a website while leveraging all the new

advantages from the modern Windows APIs (if the app is still in

development).

Not all Win32 applications can be packaged and launched inside an

MSIX container. Microsoft has prepared a list of requirements9 -- you

can check this article to make sure your application is suitable for

migrating to MSIX.

The MSIX Container

The application delivered with an MSIX package runs on systems inside

a container. This container, sometimes called "Helium" by Microsoft, is

a lightweight version of the containers on Windows Servers that are

meant to be used by services such as Docker. As you will see, we will

sometimes refer to this runtime environment as the MSIX Runtime.

Depicted below, you will find that the MSIX container can bring together:

● MSIX packaged applications (full trust model),

● Applications packaged as Desktop Bridge apps (files and

registry virtualization),

● Applications packaged using UWP apps (the capability model).

9 https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-
prepare

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-prepare

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 19

MSIX Container

These different programming models share the container, but do not

necessarily support the same features.

Classic Win32 apps converted to MSIX have runtime functionalities that

UWP apps do not have. This is because they declare a special capability

called “runFullTrust” in the manifest. The name refers to the trust level

granted within the container and is not related to UAC elevation on the

system, so it may be a bit misleading.

While the apps we deal with these days are either traditional Win32

based code or UWP based code, we're noticing a shift of direction. Now,

developers with source code access may build a hybrid app that

leverages both platforms, as long as they build it as an MSIX package.

As it is more of a bolt-on approach for the developer, today we think of

this as a hybrid, but eventually, we will likely begin to think of these as

the “native MSIX apps”.

Classic Win32 MSIX packaged applications will still run only on desktop

devices, and they don't “become“ universal apps simply because we are

packaging them in a new format. These converted apps are still

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 20

compiled for x86 and x64 processors and need all of the traditional

Windows dlls, so they cannot run on non-Windows tablets/phones or

other non-supported devices. In general, MSIX packaged Win32 apps

currently only work on Windows 10, running x86 or x64 Intel/AMD

processors.

There is one exception, the Always-Connected-PC10 devices, running

Windows 10 in S mode, where Win32 apps run on ARM devices with

emulation support (included in the OS) and specific ARM CPUs.

Remember. You can deploy an MSIX package of a Win32 app-only on

desktops or Windows 10 devices.

System Interfaces

The MSI or EXE installation of a traditional application does much more

than lay down files and registry items. During the integration of an

application in the system, the installation touches various system

locations - which could negatively impact other existing applications

and the system itself.

Adding an MSIX or a UWP package to the system is different. For the

most part, everything exists within the container and very few resources

are exposed outside of it. The resources that are exposed are defined in

the package manifest. Because of this, you have more control over

possible impacts on the system through the AppInstaller software when

adding or removing the package.

10 https://www.microsoft.com/en-us/windows/s-mode

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.microsoft.com/en-us/windows/s-mode

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 21

The following diagram indicates the OS resources supported at this

time (for a Win32 application) that an MSIX package can install. On top

of these, from your source code you can enable your application to also

use the new native UWP components (app services, background task,

etc) to better integrate with the OS or other applications.

MSIX - Supported OS resources

Here is a summary of what an MSIX package can natively install today:

● Files

● Registry (available as a package Application Hive only seen

within the container)

● Fonts

● Tiles (a replacement of the common shortcuts you’ve created so

far)

● Services (which get installed and run outside the container)

● COM

● File Associations

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 22

● URL Protocols

One important thing to understand is that all of the above resources are

defined in a completely new manner for MSIX packages. Gone are the

days when you could write to the registry to define a file type

association or integrate a COM component. You can read more about it

in our “AppxManifest.xml aka the Package Manifest” chapter.

If you're looking for drivers, these are not supported directly in MSIX

packages but are referenced as an external component. Microsoft

recommends that all drivers are uploaded to the Microsoft Store by the

hardware providers, so the OS manages their installation automatically

for the end-user.

As MSIX is still in development, we can still expect changes, but until

then, you can use the hybrid-solution adopted by the App-V folks, where

drivers still get deployed using our old friend, the MSI package.

Important. The list of supported resources is constantly updated by

Microsoft, check Advanced Installer Blog - MSIX Support Windows11

article for the latest version.

The MSIX Package Layout

The image below shows the most common and basic MSIX package

layout. You can see a similar list of resources if you extract an MSIX

package using makeappx.exe or using a tool like 7-Zip.

11 https://www.advancedinstaller.com/msix-support-windows.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-support-windows.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 23

Extracting the package this way makes it quick to inspect its contents

without using a dedicated editor/viewer. The structure you see below is

exactly the same one that will be expanded by the OS in the installation

folder, under %ProgramFiles%\WindowsApps.

Contents of an extracted MSIX package

If you have experience using App-V, you can notice the similarities

between the two package formats. Unlike App-V, the MSIX package

does not come with additional external configuration files.

Let’s have a quick look at each of the main areas from the package.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 24

Assets - As the name implies, this folder is where all the app’s graphics

assets should be found. These are usually generated/extracted

automatically by the packaging tool.

MSIX packages are much more aware of the graphical capabilities of a

device and can carry graphical assets for any screen size and DPI, while

optimizing their delivery.

VFS - This folder normally contains the application binaries. DLLs, EXEs,

config files, and so on. The VFS and Assets folders are also known as

the app payload.

At installation time, the files from the VFS folder are overlaid on top of

the system’s known folders. Your application will perceive these files to

be in the well-known system locations (like Program Files or System

folders), when in fact they are all found in the redirected locations

inside: %ProgramFiles%\WindowsApps\package_name\VFS.

Remember. Nothing gets written in the installation folder at runtime.

Any configuration files that will need to be updated by your application

will actually be redirected by the third layer (application files and

settings). You can read more about this in our VFS chapter.

In some cases, the application might fail to run from the VFS folder. In

this case, the packaging tool should give you the option to place the

application resources directly into the package root.

Registry.dat - This file stores the HKLM and HKCU registry entries of the

app. Some packages also have additional .dat files that contain a copy

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 25

of the user registry entries (User.dat), and the equivalent of the HKCR

view (User.Classes.dat),

This means that your registry settings from the package are no longer

installed directly on the machine, polluting the system registry hives.

Instead, you have an Application Hive, only available to the application

running inside the container with your package. Just as with the VFS,

the OS maps the registry from your package on top of the registry from

the system, making the application see a unified version of all the

registry hives.

Remember. Your app can no longer use the registry to share data

stored in application-specific folders with other applications (since

these registry entries are only visible from inside the container of your

app).

Also, you can no longer define FTAs or other similar resources by

manipulation of the registry alone. That is now all done through the

AppxManifest.xml.

A good repackaging tool, however, will use the older style

registrations to automatically trigger the addition of the appropriate

entries into the manifest.

Tip! If a “.dat” registry hive file is present in an MSIX package it

indicates the packaged application is a Win32 one, not a full UWP

application. Only MSIX packages for Win32 apps can contain registry

“.dat” files.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 26

Resources.pri - This file contains app resources, like localized strings

and paths for additional resource files. Packages contain one file per

language.

AppxManifest.xml - This XML file is the core resource of an MSIX

package, as detailed in the following chapter. It contains all the

information required by the system to identify, install, and run the

application.

This is where you will find the:

● Applications installed by your package

● Package declarations & capabilities (FTAs, Services, etc.)

● Dependencies for other MSIX packages (redistributables, or the

package that a modification package layers onto, etc.)

The package manifest is automatically generated by the packaging tool

you use. You can also create/edit it manually and use makeappx.exe to

manually package the extracted resources into an MSIX.

Note! While general compression tools, such as 7-Zip are practical for

viewing the MSIX package contents, if you just rename a file from .7x

to .msix, it will not create a valid package. Only makeappx, or a tool

that uses makeappx under the covers, can generate a valid MSIX

package.

AppxBlockMap.xml - This is a file generated at build time, by the

packaging tool, it contains a list of all the app’s binaries and their

hashes. It is used by the system for integrity checks and for performing

differential updates (lowering bandwidth usage by downloading only the

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 27

changed files), as well as single-instance storage (across all packages

installed on the system).

AppxSignature.p7x - This file stores the digital signature information for

the package contents. Just like the block map file, it is automatically

generated by the packaging tool.

Remember. All MSIX packages must be digitally signed with an SHA-

256 code signing certificate.

If you build the package and deploy it internally in your company, you

can also use a self-signed certificate (that was previously installed on

all the machines where the package will be deployed, otherwise the

package deployment will fail).

All the packages from the Microsoft Store are digitally signed with a

Microsoft certificate (not the vendor’s certificate) which is trusted by

the OS.

Digital Signing is a completely new requirement for application

packaging (which was optional for MSIs). We wrote an entire section on

this topic to help you employ a streamlined process across your entire

packaging team.

[Content_Types].xml - Contains information about the types of content

in an MSIX package, used by the system at installation. This resource is

also generated automatically by the packaging tool.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 28

AppxManifest.xml aka the Package Manifest

The AppxManifest.xml file is the MSIX package manifest and an MSIX

package contains a single manifest file.

MSIX bundles, which can carry multiple MSIX Packages such as one for

x86 and one for x64 deployment, contain a manifest package for each

MSIX package found inside that bundle.

The manifest holds the information defining the application and its

features. This information is used by the system to install or uninstall,

as well as to update and control the app’s behavior during its lifetime.

Here is where you will find the definitions used for package installation,

including:

● Applications (programs that have a user-accessible entry point)

installed by your package;

● Services;

● Package declarations & capabilities (FTAs, Services,

executionAlias, COMs, etc.);

● Dependencies for other MSIX packages (redistributables, or the

package that a modification package layers onto, etc.)

This file is usually generated automatically by the tool building the MSIX

package, be it Visual Studio, Advanced Installer, or any other packaging

tool. Of course, you can create it manually, although it is not

recommended. This file ends up in the installation folder of your app

and it is read-only.

The contents of the file must follow the schemas imposed by the OS.

These schemas may differ between different major Windows 10

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 29

updates, therefore it is very important to know what OS versions you’re

targeting with your app, otherwise, you might end up using features that

are not available for your application.

Important. The list of supported resources is constantly updated by

Microsoft, check Advanced Installer Blog - MSIX Support Windows12

article for the latest version.

Manifest Sample Template

Below, you can find a basic template for a package manifest. Most apps

that you will work with will have a larger manifest with more

information, but this is the core information you should find. The

manifest often contains the:

● Schema References - references to the various schema parts

and updates that will be used.

● App Identity - this is a unique identifier of your package

● Properties - information about the app, such as the name to be

included in the Settings -> Apps and other resources.

● Prerequisites - the criteria the app needs to meet to install

properly

● Resources - the package/app location and others

● Application(s) - including:

○ The entry point(s) - This is what you see in the “Start

Menu” after installation.

○ FTAs - Your file type associations.

○ URLs - Your protocol handler associations (not shown in

the example).

12 https://www.advancedinstaller.com/msix-support-windows.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-support-windows.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 30

● COM - Not shown in the example.

● Services - Not shown in the example.

Remember. FTAs and other resources that you used to define in the

registry when building an MSI must now be defined in the package

manifest.

Other entries are optional. Optional entries added by updated schemas,

such as the UAP10 extensions, may need a more up to date version of

the Operating System to be used. You can find a full list of schema

elements and requirements in this Microsoft Documentation13.

<?xml version="1.0" encoding="utf-8"?>

 <Package xmlns="http://schemas.microsoft.com/appx/
 2010/manifest"

xmlns:uap="http://schemas.microsoft.com/appx/

 manifest/uap/windows10"

xmlns:rescap="http://schemas.microsoft.com/appx/

 manifest/foundation/windows10/

 restrictedcapabilities" >

<Identity Name="MyCompany.MySuite.MyApp"

 Version="1.0.0.0"

 Publisher="CN=MyCompany, O=MyCompany,

 L=MyCity, S=MyState,

 C=MyCountry"/>

 <Properties>

 <DisplayName>MyApp</DisplayName>

 <PublisherDisplayName>MyCompany

13 https://docs.microsoft.com/en-
us/uwp/schemas/appxpackage/uapmanifestschema/schema-root

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/uwp/schemas/appxpackage/uapmanifestschema/schema-root
http://schemas.microsoft.com/appx/2010/manifest
http://schemas.microsoft.com/appx/2010/manifest
http://schemas.microsoft.com/appx/

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 31

</PublisherDisplayName>

<Logo>images\icon.png</Logo>

 </Properties>

 <Dependencies>

<TargetDeviceFamily

 Name="Windows.Desktop"

MinVersion="10.0.17763.0"

MaxVersionTested="10.0.18335.0" />

 </Dependencies>

 <Capabilities>

<rescap:Capability Name="runFullTrust" />

 </Capabilities>

 <Resources>

<Resource Language="en-US" />

 </Resources>

 <Applications>

<Application

EntryPoint="Windows.FullTrustApplication"

Executable="myapp.exe" Id="myapp.exe">

<uap:VisualElements

BackgroundColor="transparent"

DisplayName="My App"

 Description="A useful description."

Logo="images\icon.png"

SmallLogo="images\small_icon.png"

ForegroundText="dark"

BackgroundColor="#FFFFFF" >

<SplashScreen Image="images\splash.png" />

</VisualElements>

<Extensions>

 <uap:Extension

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 32

 Category=

 "windows.fileTypeAssociation"

EntryPoint=

 "Windows.FullTrustApplication"

Executable="myapp.exe">

 <uap:FileTypeAssociation

 Name=".foo">

 <uap:EditFlags

AlwaysUnsafe="false"

OpenIsSafe="false"/>

 <uap:SupportedFileTypes>

<uap:FileType>.foo</uap:FileType>

 </uap:SupportedFileTypes>

 </uap:FileTypeAssociation>

 </uap:Extension

 </Extensions>

 </Application>

 </Applications>

</Package>

Package Files and VFS

Package files may exist either under the root of the package (next to the

AppXManifest.xml file referenced earlier) as well as in numerous

subfolders that may be created, or under a special subfolder named

VFS or Virtual File System.

We will be covering both of these notions within the current section.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 33

Package “Root” folder

Although you may be tempted to put files under the root folder as it

gives you the impression that it mimics the Win32 style of installing into

the Program Files folder, in practice all files will be placed under the

“Program Files\WindowsApps'” folder. VFS files are just written to VFS

subfolders, which allow for layer merging opportunities with native files

and other packages. .

For example:, when the package contains configuration files that an

Enterprise IT Pro might want to override by using a Modification

Package with updated versions of those files. This scenario will require

the developer to use VFS pathing, at least for those files.

Files under the package root folder (and subfolders other than VFS) are

normally not writable without using the Package Support Framework to

include additional redirection capabilities. However, on OS 2004 and

later, there is a new manifest entry in the UAP10 schema called

“InstalledLocationVirtualization”. When specified, this manifest

instructs the runtime to perform the same action that the PSF

FileRedirectionFixup would have taken to allow writes.

Virtual File System (VFS)

For compatibility purposes, when repackaging traditional apps, we often

prefer to place the files under the VFS tree.

Inside this VFS folder, there may be additional specially named folders

that represent original system locations. It might be convenient to think

of them as variables similar to the %Home% environment variable, or

KnownFolderIds.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 34

The VFS allows the traditional Win32 application to either make

requests to the actual installed location, or (when inside the VFS folder)

allow the application to access its own resources without requiring any

code changes. When it comes to application files access, the

redirection kicks in automatically when the application is trying to

access files from the equivalent location on the end-user’s system. The

support provided may vary depending on the nature of the file operation,

and the location of the file.

When the application running inside the container attempts to find or

read a file under the known path, the system will automatically check

the redirected package VFS location first, and then (if necessary) check

the location requested by the application.

While Read operations should work without any problems (except for

AppData and LocalAppData, as noted below), Write and other

operations will lead to many application failures. This is expected

unless Package Support Framework fixups are applied to the program

to solve the issue.

Please note that Read, Write, and other operations to files and folders

that are not part of the package, or VFS mapping, are not controlled by

the container and are allowed as long as the user has permission to

perform the operation requested. For example, as long as the package

does not have a VFS\Documents folder in it, any attempt to Read or

Write files to the user’s Documents folder will be handled externally and

those files will be automatically visible to other applications.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 35

These details of VFS support may vary depending on the folder, and

possibly the OS version. Many (but not all) of the VFS folders supported

are documented by Microsoft here14.

Be aware that this document hasn't been updated since the previous

Desktop Bridge technology, so some details are no longer applicable.

Developers with access to source code should consider that it is highly

recommended that you use API calls for retrieving the location of

standard folders rather than “hard-coding” paths in your software. Both

Environment variables and KnownFolderID APIs are available for this

purpose, and will help make the application more portable. For example,

for AppData folder paths, you might use something like this:

//local app data

string localPath = Environment.GetFolderPath

(Environment.SpecialFolder.LocalApplicationData);

//roaming app data

string roamingPath = Environment.GetFolderPath

(Environment.SpecialFolder.ApplicationData);

The most important VFS folders are listed here:

ProgramFilesX86 and ProgramFilesX64

On a 64-bit Windows 10 system, the known paths:

14 https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-
behind-the-scenes

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 36

C:\Program Files\

C:\Program Files (x86)\

Will map to paths looking like these:

C:\Program Files\WindowsApps\<AppName>\

 VFS\ProgramFilesX64\

C:\ProgramFiles\WindowsApps\<AppName>\

 VFS\ProgramFilesX86\

Documents

Maps to the users Documents folder.

Windows

Maps from C:\Windows

Although some sub-folders under this system folder have separate

mappings, this VFS reference is used for all other references. For

example, DotNet components added to the global assembly cache

appear under the VFS\Windows\Assembly folder.

Fonts

Maps from C:\Windows\Fonts

Systemx86

Maps from C:\Windows\System32 on 32 bit systems.

Maps from C:\Windows\SystemWow64 on 64-bit systems.

Systemx64

Maps from C:\Windows\System32 on 64-bit systems.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 37

AppData, LocalAppData, and CommonAppData

AppData maps from C:\Users\[username]\AppData\Roaming

LocalAppData maps from C:\Users\[username]\AppData\Local

CommonAppData maps from C:\ProgramData

When constructing the package, one has to consider these common

locations where settings and data are commonly placed. If the package

is constructed without one of these VFS folders referenced, then

(similar to the Documents folder example), all Reads and Writes will

work just as the original Win32 app.

Typically, we want to pre-configure repackaged applications with

settings, or include required data files, as part of the package. When we

use these three VFS folders, the runtime support generally has special

limitations, possibly depending on the folder and on the OS runtime

version:

● AppData - Prior to the 1903 Runtime, files in the VFS\AppData

folder of the package are not visible to the application by VFS

redirection. In these versions, attempts to write to this location

would be treated the same as for a non-containerized

application.

When the VFS\AppData folder is present, any attempt to write to

a file under the user’s Appdata\Roaming folder, whether to

overwrite an existing file or create a new one will fail.

Starting with the 1903 Runtime, VFS\AppData files and folders

now redirect for Read and Write purposes. This Write redirection

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 38

is performed by the OS using the same location as the one used

by the Package Support Framework.

If your package might be used on down-rev systems, it may be

safer to use the PackageSupportFramework in the package to

ensure correct operation on any OS version.

● LocalAppData - On all versions (currently), files in the

VFS\LocalAppData folder of the package are not visible to the

application by VFS redirection alone.

The Package Support Framework may be added to make this

area Read and Write capable.

● CommonAppData - On all versions (currently), files in the

VFS\CommonlAppData folder of the package are not visible to

the application by VFS redirection alone.

The Package Support Framework may be added to make this

area Read and Write capable.

AppVPackageRoot

Maps from C:\

This acts as a catch-all for mappings that do not have another VFS

mapping. Note that technically, the mapping is to the root folder of the

drive letter that Windows is installed on, which is normally the C: drive.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 39

Registry

The MSIX container for Win32 applications brings the App-V registry

style of containerization support to the mainstream. This helps to solve

some issues, like registry bloat and application interference with other

applications, but isolation causes different issues that you might have

to deal with as well.

The Windows Registry consists of a number of registry hives. Most

technical people are already familiar with the HKEY_LOCAL_MACHINE

and HKEY_CURRENT_USER hives of the registry. As a user logs into a

Windows desktop, their personal user hive is loaded into the logon

session as HKEY_CURRENT_USER. MSIX containerized applications use

a new type of hive known as the Application hive. The Application hive

is only loaded within the container processes when the modern app is

started.

The application hive includes two major branches, MACHINE and USER.

Similar to how the VFS allows the runtime to layer certain package

folders over the local file system, these two application hive keys act as

an overlay to HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER.

Having all these registry entries stored separately for each app means

the end-user will get shorter boot and logon times, as Windows doesn’t

have to load the registry entries for all the apps. The application hive

becomes mounted only when the container is started.

For more information on how a package's file and registry items work

under MSIX, visit Microsoft’s documentation15.

15 https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-
behind-the-scenes

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 40

Registry Format in the Package

The MSIX package format stores the containerized registry of the

package in standard form of the registry “dat” format. An MSIX

package can have up to three .dat files.

● Registry.dat

● User.dat

● User.Classes.dat

Note. Pure UWP apps do not contain any registry .dat files in their

packages. All of the registry entries for your package for both HKLM

and HKCU will be stored in the Registry.dat file.

The User.dat file (when present) will contain a copy of the HKCU

portion, and the UserClasses.dat file (when present) will contain a copy

of the HKCU/Software/Classes area. It's a common assumption that

these two extra files are used to boost performance for tools or

components that only need to view those portions of the package

registry. But, our experience has shown that the User.dat and

User.Classes.Dat files only appear in the package when there are

registry items in the package for the HKCU/Software/Classes area.

The .dat file format is a native registry file form, and if you need to view

it, you can use a tool like RegEdit to import/export .dat files onto an

existing key. The file is expected to contain a root key called

“REGISTRY”, with sub keys for MACHINE and USER as needed for the

equivalent to HKLM and HKCU on the native system.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 41

Traditional Apps andApplication Registry Hive: Possible Issues

When delivered, the .dat files within the package are immutable,

meaning that the registry values themselves can never be changed

when a user runs the application. Instead, similar to App-V changes

attempted directly to the application hive might be redirected to another

safe location. Originally this redirection was not supported by App-V, but

redirection for registry writes for many “Current User” registry items was

added to the 2004 OS runtimes. The Package Support Framework may

be able to support additional cases not supported by the runtime itself.

We can't disregard the possibility of human error when including logic

or appropriately handling error returns to registry calls in some

scenarios. Some programmers may have never encountered the kinds

of issues which can occur when running inside a container and could

lead to the programming logic request to be reinstalled, for memory

corruption to occur, or the application to crash.

There are no hard rules as to when an application will have an issue in a

registry request. But predominantly, it usually depends on the following

aspects:

● How the application makes the request. When the application

makes a request to operate on a registry key or item, it includes

a request for the needed permissions. For example, those

permissions can include Read, Write, and Delete permissions, or

owner and ACL information. One of the most common issues we

see happening with MSIX is related to applications that ask for

“full access in registry calls". While this was always allowed (at

least for HKCU), it is not under MSIX. In particular, Deletion, ACL

and Ownership permissions are disallowed by the MSIX runtime.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 42

● The part of the registry the request is made for. HKLM and

HKCU requests with the same access permissions may behave

differently under the MSIX runtime.

● The version of the OS the app is running on. Microsoft can

change the MSIX runtime behavior from one version of the OS to

another. For example, the restrictions were lessened slightly in

the 2004 version of the OS.

If the application source code is not available for modification to

remediate the situation, the Package Support Framework has a registry

fixup that may solve the issue by performing changes to the API calls

made by the application.

When permitted, all Writes to the application hive are copy-on-written to

a private per-user, per-app location, the same way AppData is handled.

This allows the system to easily delete all the registry entries created by

the app during its lifetime. This process happens upon uninstallation

and avoids the all-known registry rot that has been slowing down

Windows machines for decades.

All of these hives are virtually merged at run-time with the registry found

on the OS, allowing the app to “see” the entire registry as a singular

resource. This dynamic merging permits the application to view the

modified package hive layered on top of the package hive, which in turn

is layered on top of the system hives.

A note for those familiar with the App-V virtual registry. The App-V

virtual registry works in a similar functional way, except for two aspects:

1. Under App-V, registry keys can contain a marker to

indicate if layering should merge with the system hives,

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 43

or override (hide) the equivalent system key. The override

method was used to hide keys and values of a potentially

natively installed version of the same application. MSIX

always uses the merge method.

2. Under App-V, registry keys and items can have deletion

markers, indicating that the item should not exist as far

as the app is concerned, even if it is present on a lower

layer.MSIX (at this time) does not support any form of

deletion markers.

Replacement of Registry Strings Containing File Paths

Typically, when a repackaging tool is used to generate an MSIX package

from a traditional installer, the tool will automatically generate the .dat

files for you. When these tools perform this action, they normally look

for file string values that might be stored in the registry item values,

either in Reg_SZ, Multistring, or Expandable string/multistring types.

These file paths are usually altered to use file pathing relative to the

package root folder.

As a case in point, the application might store the location of an

important component upon installation, and then read that value to

know where to look for it. On an x64 system, the file itself may have

been written to “C:\Program Files” and is captured in the package under

the “VFS\Program Files” folder. So, if the original registry value started

with “C:\Program Files” , the reference string would change the

beginning of the string to “VFS\ProgramFilesX64”.

Developers creating packages may use the same technique to help with

portability.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 44

Debugging the Containerized Registry

The isolation from the system’s regular hives provided by the use of

Application hives means that you’ll have fewer problems with packages

interfering with each other. However, in some cases, this isolation

creates an impediment for inter-app communication through the

registry. And, it also changes the way you debug your registry.

As an illustration, a ProcessMonitor trace will show registry references

in different forms, depending on how the application determines the

registry path. When the application starts with a hard coded base path

in the application, you might see the ProcMon trace events using the

“native path” (which gets redirected to the registry hive), but when the

application uses a return path (taken from the registry) to form a new

registry request, the path can appear in the ProcMon trace in the

following form: “\REGISTRY\WC\Silo{id}user_sid\Software…”

You can interpret this as an instance of the application hive for a current

user path.

The Package Support Framework Trace fixup may also be added to the

package to allow tracing of an exact Windows API call. This trace

always shows the call as made by the application.

Either form of tracing can be used to determine when registry calls are

failing, as well as remediation through application source code changes

or other Package Support Framework based fixups.

It is often convenient to access the applications view of the registry

using a tool like RegEdit. Accessing the registry using tools externally

from the package container provides no access to the application hive

of a package. These resources are only visible in the app’s container, so,

you will need to launch your registry editor or command prompt directly

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 45

into the container. If you enable "developer mode" on the OS, you can do

this with a simple PowerShell command:

Invoke-CommandInDesktopPackage

Advanced Installer - MSIX PowerShell cmdlets16 provides some other

MSIX PowerShell commandlets that you might find useful in testing or

debugging situations.

You can also use the free Hover17 application built by the Advanced

Installer team to speed up the process of running commands inside the

package container environment.

16 https://www.advancedinstaller.com/msix-powershell-cmdlets.html
17 http://advancedinstaller.com/hover

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-powershell-cmdlets.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-powershell-cmdlets.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
http://advancedinstaller.com/hover?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 46

Download it from: Advanced Installer - Hover18

Hover GUI

OS Integration

As mentioned in the beginning of this chapter, the registry entries of an

MSIX-packaged app are visible only inside its container - which means

18 http://advancedinstaller.com/hover

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
http://advancedinstaller.com/hover?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 47

that other apps, including the OS cannot “see” the registry. Naturally,

this characteristic changes some packaging habits.

Registry entries to define resources like FTAs, update PATH

environment variables, or add COM components, are ignored. All of

these resources must be declared in the Package Manifest for them to

be integrated into the OS when the application is installed. Most

repackaging tools will migrate these settings for you.

See section “AppxManifest.xml aka the Package Manifest” for more

details.

Package Deployment Install Locations

By default, all MSIX packages are installed/extracted by the OS in the

following folder:

%ProgramFiles%\WindowsApps

This is a system location, inaccessible by default, from Windows

Explorer. Although there are methods to make it visible, we will not be

going over them in this book.

Inside that folder, you will find subfolders for each app installed on the

machine, including the OS built-in apps. The folder names here are not

necessarily related to the MSIX filename, but are derived from fields

within the package manifest files. All folders have their name following

this pattern:

 PublisherName.AppName_AppVersion_architecture_hash

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 48

Here’s an example of a folder name (Note: there are two underscore

symbols "_" before the hash):

Microsoft.WindowsCalculator_10.1806.1821.0__x64__8wek

yb3d8bbwe

The extracted MSIX package is inside the folder, just as you would see

if you extract it with 7-Zip or other similar tools.

Only the OS can write in this location when installing your app. If your

app is writing log files or other data inside the installation folder, it may

crash or behave defectively. You need to either update your code to

write outside of the package boundaries (and to %AppData% on OS

1903 and above) or fix it using the Package Support Framework for

other OS versions and in the situations when you don’t have access to

the code.

Appx Volumes

The installation path mentioned above is the default appx volume

present on every Windows 10 machine.

You can define multiple volumes, move apps between them, or

completely move all apps from a volume (such as the default one) to a

new one, on a different drive.

The appx volumes can be managed using these dedicated PowerShell

commandlets:

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 49

> Add-AppxVolume

> Remove-AppxVolume

> Dismount-AppxVolume

> Get-AppxVolume

> Mount-AppxVolume

You can find more details on the MSIX PowerShell commandlets at

Advanced Installer - MSIX Powershell cmdlets19.

MSIX App Attach

With the introduction of Windows Virtual Desktop (WVD), Microsoft also

introduced the MSIX App Attach, a delivery engine of desktop

applications for virtual environments.

The underlying technology supporting this engine is similar to the one

used by the FSLogix solutions. It relies on filter drivers to deliver the

MSIX package from a VHD.

The install location for apps deployed through App Attach uses the new

VHD as a source. Launching the app on the virtual desktop requires one

additional step. This step, executed every time the user logs in, will

register the app’s AppXManifest on the machine’s local default appx

volume, %ProgramFiles%\WindowsApps. At log off, all apps published

through App Attach are automatically deregistered.

So in the end, you get a hybrid install path, with the application binaries

present on the VHD (which is usually stored on a shared-storage server)

but with the AppxManifest found on the default appx volume.

19 https://www.advancedinstaller.com/msix-powershell-cmdlets.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-powershell-cmdlets.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-powershell-cmdlets.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 50

Applications delivered through App Attach promise great improvements

for VDI-based infrastructures, but currently with a few limitations - not

all MSIX packages can be deployed using App Attach.

The App Attach technology is less than a year old, it hasn’t yet matured

and currently lacks sufficient management. We’ll come back with more

details on its capabilities and limitations in a future edition of this book.

You can read more about Microsoft's introduction for MSIX App Attach

here at Microsoft Documentation - Azure | Virtual Desktop | What is

AppAttach20 and within this book we will cover the topic in more detail

within the "VDI Meets MSIX with App Attach" section.

Uninstall and Cleanup: MSI vs. MSIX

Most of the time, when you uninstall an MSI package the application

files from AppData and the registry entries created by the applications

during its lifetime are left on the machine, polluting the system with

garbage. The famously called “Windows rot”. This makes your PC

slower every time you install an application.

MSIX packages, on the other hand, reduce machine clutter by

simplifying the install and uninstall process.

Due to its containerized model, uninstalling an MSIX package will

remove any files that the app has created while running (only the files

redirected to its %LocalAppData%) by default. This includes all the

application files installed under %ProgramFiles%WindowsApps, and any

installation activities performed elsewhere. Additionally, any redirected

20 https://docs.microsoft.com/en-us/azure/virtual-desktop/what-is-app-attach

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/azure/virtual-desktop/what-is-app-attach
https://docs.microsoft.com/en-us/azure/virtual-desktop/what-is-app-attach

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 51

registry writes to the application hive are removed. This helps to keep a

clean machine and avoid the Windows rot.

Keep in mind that if the application creates files in other locations on

the machine (not recommended, but possible if it has the right

permissions), those files will not be deleted upon uninstallation. For

example, a file saved in the Downloads or Desktop folder.

Generally, an update of a package will remove the previous version (if

no other user on the system has it installed), but package data will be

retained in the newer version.

The MSIX PowerShell commandlets provide you with options to

automate your uninstalls:

> Remove-AppPackage <package full name,

possibly using wildcards>

Microsoft made two types of changes in OS 2004 that now can impact

the removal of package-related data. These are new as the book is

being written, so while we do not have experience in using them in

production, we just want to mention them:

● There are now options on the cmdlet to prevent removal of

package related data. More details on the MSIX PowerShell

commandlets can be found at Advanced Installer - MSIX

PowerShell cmdlets21

21 https://www.advancedinstaller.com/msix-powershell-cmdlets.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-powershell-cmdlets.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-powershell-cmdlets.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-powershell-cmdlets.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 52

● There is a new option in the package manifest (UAP10 schema)

called UpdateActions that appears to be related to the upgrade

scenario but might also apply during an uninstallation.

Uninstalling Modification Packages

Important! When you uninstall an MSIX package, its related

modification packages will be removed automatically.

As explained in the MSIX Modification Packages chapter, these are

independently managed packages with regards to their deployment.

Make sure your deployment team receives correct and clear

instructions for removing these packages.

Microsoft Documentation and

Community Sites
If it is only one link you learn one from this book, it should be this one:

“http://aka.ms/msix”. This is Microsoft's landing page for all things

related to MSIX.

From this page, Microsoft provides access to documentation,

downloads, tutorials, videos, and the MSIX community known as “Tech

Community” (the replacement of the old TechNet forums), and more.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
http://aka.ms/msix

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 53

Microsoft Documentation

Microsoft hosts its documentation on GitHub, and to help keep it up to

date, they allow you to even mark up pages and make pull requests (the

submission process used in git to request adding your changes into the

documentation).

As it is typical with Microsoft Documentation, the Microsoft

documentation for MSIX is filled with high level concepts, and low level

details, but is commonly a little light on providing details to get the full

picture.

This book focuses on some of the missing information, especially on

helping you understand when and why you might use some of the

information found in the detail-level document. It also explores the non-

Microsoft options available out there.

MSIX Tech Community

The Microsoft Tech Community Site22 hosts hundreds of new

community hubs created by Microsoft. Once you log in, you may

register to the MSIX community. Then, go to Microsoft Tech Community

- MSIX23 to have direct access to the MSIX-based Conversations and

Ideas (forum posts), along with Blogs posted by the MSIX development

team.

This is a highly active community, and currently the Microsoft

development team is heavily engaged in the conversations and ideas. If

you need help, or just want to learn from others who may have faced a

22 https://techcommunity.microsoft.com/
23 https://techcommunity.microsoft.com/t5/msix/ct-p/MSIX

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://techcommunity.microsoft.com/
https://techcommunity.microsoft.com/t5/msix/ct-p/MSIX
https://techcommunity.microsoft.com/t5/msix/ct-p/MSIX

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 54

similar problem to the ones you're facing today, you’ll want to check it

out.

Industry Blogs & Resources

Tim Mangan’s Blog - Confessions of a Guru – Blogs from TMurgent24.

MSIX Report Cards, by Tim Mangan - A series of research papers

examining how MSIX is doing at various points in time - MSIX Report

Cards25.

Advanced Installer’s Blog - Blog | The MSI(X) Experts Crib26.

MSIX Ready Apps - A collection of apps evaluated by the Advanced

Installer team - MSIX Ready27.

Pascal Berger’s Blog - MSIX Archives28.

Social Media

On various social media sites, the hashtag #MSIX is used by folks

sharing news and information about MSIX. At this time, Twitter seems

to be the most popular for MSIX social media resources.

24 http://www.tmurgent.com/TMblog/
25 https://www.tmurgent.com/appv/en/resources/report-cards
26 https://www.advancedinstaller.com/blog/msix-page-1.html
27 https://www.advancedinstaller.com/msix-ready.html
28 https://www.wpninjas.ch/category/msix/

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
http://www.tmurgent.com/TMblog/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.tmurgent.com/appv/en/resources/report-cards?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.tmurgent.com/appv/en/resources/report-cards?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/blog/msix-page-1.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-ready.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.wpninjas.ch/category/msix/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 55

OS Version vs MSIX Functionality

The public rollout of MSIX started with Windows 1709. Ever since,

Microsoft has continuously improved the platform with new and

updated features.

To get an always-up-to-date reference of all the features listed in this

book, you can bookmark the following URL on your browser:

“advancedinstaller.com/msix-support-windows”

This online list will be constantly updated by the Advanced Installer team.

By the time you read the first edition of this book, most Windows 10

enterprise users should be running Windows 10 1803 (considering

Microsoft’s policy of supporting each update for only 18 months).

Assuming you are running 1803, we will skip the MSIX features

available by default in this version and only mention a few of the most

important features that require a newer Windows 10 version. (latest

update: June 2020)

Modification Packages 1809

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-support-windows.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 56

Windows 10 S 1809 As a target device for deploying apps in your

infrastructure.

MSIX Bundles 1809

“allowElevation” 1809 Works if the Win32 app has the execution

level set to “requireAdministrator“.

“ForceUpdateFromAnyVersion” 1809 Enables downgrade scenarios.

Protocol Handlers 1909

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Technology Fundamentals

 Powered by AdvancedInstaller.com 57

Shell Extensions 1909 Support for Context Menu shell extensions.

Other shell extensions might work.

NT Services 2004 The services actually run outside the MSIX

container.

User Registry Changes 2004 Support for user modification of HKCU

items in the package. Only available if the

package has a User.Reg file.

Fonts 2004 Support for fonts in the package. The fonts

remain contained within the package but

are made available both inside and outside

the container.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Tooling for IT Pros & Developers

 Powered by AdvancedInstaller.com 58

MSIX Tooling for IT Pros

& Developers
We're always looking for ways to simplify and smarten our job - and

tools allow us to achieve that. As Microsoft MSIX Packaging Tool is the

preferred tool for IT Pros that want to repackage into MSIX technology,

we think it's important we go through it extensively, touching on the

specific options and capabilities it brings.

Often, the Microsoft MSIX Packaging Tool is used in combination with a

third-party tool, Tim Mangan’s PsfTooling, so we will be covering them

both next.

Microsoft MSIX Packaging Tool

Microsoft offers a first-party tool to help IT Pros repackage existing

applications into MSIX packages by capturing the installation. The

Microsoft MSIX Packaging Tool (MMPT) offers a basic level of

capabilities that is sufficient for many situations. However, they leave

plenty of room for their tooling partners to be able to create tools that

fill in the gaps, are easier to use, or address more sophisticated

scenarios in your environment.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Tooling for IT Pros & Developers

 Powered by AdvancedInstaller.com 59

The MMPT29 is free to download from the Microsoft Store, and currently

gets updated around 4 times a year. Additionally, there is a special

"Insiders Program" for this tool that offers preview builds in-between.

For recapturing purposes, the MMPT should be used on a clean virtual

machine. It may also be installed on a secondary machine for

controlling remote packaging. At this time, the tool provides support to

identify and use a VM, but it does not manage the VM and snapshots

itself.

MMPT supports the following three scenarios:

1. Creating a new package by capturing an installation. This uses

a wizard to walk you through the process of entering information

and performing the capture.

2. Creating a modification package to another package. This

wizard requires you to have the primary package available.

3. Package Editing. This supports simple editing of file and registry

entries from within the tool, and the ability to edit the

AppXManifest file in an external editor of your choice.

29 https://www.microsoft.com/en-us/p/msix-packaging-tool/9n5lw3jbcxkf

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.microsoft.com/en-us/p/msix-packaging-tool/9n5lw3jbcxkf

MSIX Packaging Fundamentals - MSIX Tooling for IT Pros & Developers

 Powered by AdvancedInstaller.com 60

The MMPT is constantly adding new capabilities, so we won't go into

details on what is supported, but right now, it requires full repackaging

as there is no supported application upgrade scenario that involves an

installation recapture mode.

The MMPT also includes the capability to convert existing Microsoft

App-V 5 packages into MSIX without recapture -- this action does not

require a clean VM.

This is the primary landing page30 of the tool located on the Microsoft

Documentation.

30 https://docs.microsoft.com/en-us/windows/msix/packaging-tool/tool-
overview

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/windows/msix/packaging-tool/tool-overview
https://docs.microsoft.com/en-us/windows/msix/packaging-tool/tool-overview

MSIX Packaging Fundamentals - MSIX Tooling for IT Pros & Developers

 Powered by AdvancedInstaller.com 61

When comparing the MMPT against other packaging options, you

should note that the MMPT does not directly support the inclusion of

the Package Support Framework. It is easy to miss when reading the

documentation as the PSF simply isn’t referenced. Including the PSF

when using this tool for packaging is left as a manual task to perform

during the application installation, as well as for repackaging scenarios.

Note. The PsfTooling is typically the tool of choice to fix the manual

tasks.

The current version of the MMPT is available for download here31.

PsfTooling
Most likely, if you use the MMPT, you would need to use an additional

third-party tool called PsfTooling developed by Tim Mangan to inject

and configure the PSF. It allows to add and configure the PSF while still

in the capture mode of the MMPT. This tool is free and available for

download from the Microsoft Store.

31 https://www.microsoft.com/en-us/p/msix-packaging-tool/9n5lw3jbcxkf

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.microsoft.com/en-us/p/msix-packaging-tool/9n5lw3jbcxkf
https://www.microsoft.com/en-us/p/msix-packaging-tool/9n5lw3jbcxkf

MSIX Packaging Fundamentals - MSIX Tooling for IT Pros & Developers

 Powered by AdvancedInstaller.com 62

The tool is used while in the capture mode of the MMPT “Create New

Package” wizard, after you have completed installing and configuring

the target application. PsfTooling will make recommendations for PSF

fixups that might be required for the application, add those

components, and configure the PSF’s json file for you. The tool will also

modify the installed shortcuts and file associations to make the

installed application compatible with the packaging tool features.

PsfTooling is available to download from the Microsoft Store here32.

32 https://www.microsoft.com/en-us/p/tmurgent-psftooling/9nc6k0q954jv

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.microsoft.com/en-us/p/tmurgent-psftooling/9nc6k0q954jv

MSIX Packaging Fundamentals - MSIX Tooling for IT Pros & Developers

 Powered by AdvancedInstaller.com 63

Advanced Installer Express
The Express edition from Advanced Installer was publicly announced in

March 2018 by Kevin Gallo, Microsoft CVP, as the official release

partner for MSIX. Until the release of the MSIX Packaging Tool, it was

the only tool that supported MSIX.

Advanced Installer Express33 is a free tool available to download from

the Microsoft Store and gets constantly updated by the Advanced

Installer team.

33 https://www.microsoft.com/en-us/p/advanced-installer-
express/9n4vqdj7ltb8

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.microsoft.com/en-us/p/advanced-installer-express/9n4vqdj7ltb8

MSIX Packaging Fundamentals - MSIX Tooling for IT Pros & Developers

 Powered by AdvancedInstaller.com 64

The powerful and easy to use GUI from Advanced Installer is the main

characteristic of the Express edition. It helps create MSIX packages

while educating the user. The tool is optimized to speed up MSIX

adoption and brings considerable savings for enterprise packaging

teams.

The Advanced Installer Express edition supports the following

scenarios:

● Converting third-party packages to MSIX format.

● Creating MSIX packages from scratch (for your internal apps).

● Editing standalone MSIX packages using the advanced GUI.

In all of the above scenarios, you get the most powerful Package

Support Framework integration on the market, including automatic fixup

suggestions.

When you compare it with the MSIX Packaging Tool, the Express edition

has practical capabilities that make MSIX packaging significantly

easier.

● Automatic handling of command line (shortcut) arguments.

● Native interpretation of high-level constructs (FTAs, etc.) in the

AppxManifest.

● Build-time validation of the package content for suitability.

● Project-based oriented workflow: reload, edit and rebuild your

MSIX package in seconds.

● Package Support Framework integration, with automated fixes.

For advanced capabilities, the commercial Architect edition from

Advanced Installer brings virtual machine management/integration,

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Tooling for IT Pros & Developers

 Powered by AdvancedInstaller.com 65

team repositories, and all the standard MSI/App-V packaging tooling.

You can read more about it on Advanced Installer34.

AdminStudio
AdminStudio is a traditional commercial repackaging tool that attempts

to be a complete solution for the entire application lifecycle. As such, it

is an extensive, expensive, and complex suite. Amongst other things, it

supports repackaging of traditional installers using either inspection

(when an MSI is available) or recapture.

Flexera has added support to the product for MSIX under the following

categories:

● Static Analysis of existing MSI installer for suitability.

● Transformation of captured output into MSI, App-V, or MSIX

(and others).

● Manual inclusion of PSF based fixes.

● A stand-alone MSIX Package Editor.

● Integrations into test and distribution systems.

As products are constantly evolving, we recommend that you visit

Flexera website35 for updated information.

34 https://advancedinstaller.com
35 https://www.flexera.com/products/operations/application-
management.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.flexera.com/products/operations/application-management.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Tooling for IT Pros & Developers

 Powered by AdvancedInstaller.com 66

MSIX Commander
MSIX Commander is a free tool built by Pascal Berger. This is a

community tool that is used mainly in the package testing process.

You may be surprised to learn that the tool you see in the image here is

actually written in PowerShell. The tool source code and latest build as

an MSIX package is available on GitHub - MSIX Commander36.

The tool seems to be most useful during the smoke test phase when

testing new packages. Using the tool, you have an easy button to

access the hidden installed assets, such as the manifest or config.json

files. And, you can also work with certificates, deployments, and simple

edits and debugging.

36 https://github.com/bergerpascal/MSIX_Commander

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://github.com/bergerpascal/MSIX_Commander?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Tooling for IT Pros & Developers

 Powered by AdvancedInstaller.com 67

MSIX Hero
MSIX Hero is a free tool built by Marcin Otorowski. This is a community

tool that is also mainly used in the package testing process.

Covering some of the same features as MSIX Commander, you would

be safe to assume that this is also delivered as an MSIX package. The

application does not seem to be open source. You can download the

tool from MSIX Hero website37.

37 https://msixhero.net/get

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://msixhero.net/get?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Tooling for IT Pros & Developers

 Powered by AdvancedInstaller.com 68

The download is available in two forms -- one of them supporting the

automatic detection of updates using the same web style we will

probably see software vendors using in the future. Currently, the tool

requires you to download msix.core as an additional download.

The tool seems to be most useful during the smoke test phase when

testing new packages, but also has some simple package editing

capabilities.

Additional MSIX Packaging Tools
There are many repackaging vendors out there that have announced or

delivered MSIX support. Unfortunately, we can not cover all of them

here, but we still tried to mention most of them here. These products

usually have free trial versions for you to evaluate.

We previously covered Microsoft’s first-party tool for packaging --the

Microsoft MSIX Package Tool-- as well as tools from Advanced Installer

and Flexera.

RayPack Studio

Based in Germany, RayNet38 has been in the packaging business for

quite a while.

38 https://raynet.de/msix

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://raynet.de/msix?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Tooling for IT Pros & Developers

 Powered by AdvancedInstaller.com 69

Pace Suite

Pace39, a division of Infopulse which is further owned by TietoEvry,

provides conversion and repackaging tools.

InstallAware

Founded by a previous InstallShield alumni, InstallAware40 has some

MSIX Package editing capabilities, along with some other useful

features..

Liquit Setup Commander
Liquit Setup Commander is a tool built by Liquit.com. It is available as
a standalone product or part of the Liquit Release & Patch
Management suite.

It enables you to prepare your own in-house applications for
deployment by using either one of the connectors for Liquit
Workspace, Micro Focus ZENworks, Ivanti EPM, WVD, and Microsoft
Configuration Manager. Liquit also provides MSIX App Attach delivery
via Liquit Workspace.

Additional MSIX Development Tools

The majority of the development vendors out there have announced

or delivered MSIX support. Here are the most popular ones.

39 https://pacesuite.com/convert-exe-to-msix
40 https://www.installaware.com/

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://pacesuite.com/convert-exe-to-msix?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.installaware.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - MSIX Tooling for IT Pros & Developers

 Powered by AdvancedInstaller.com 70

Management/Delivery

● Citrix

● VMWare

● AppVentiX

● Liquit

Support

● Access IT Automation

● Camwood

● Cloudhouse

● Rimo3

● SSH2

Additional MSIX Vendors

In this section, we will list some of the other vendors seen in the

packaging space offering management, delivery, or support.

● Advanced Installer (Caphyon).

● InstallShield (Flexera).

● Wix Installer (FireGiant)

● InstallAware (InstallAware).

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 71

Fundamental Packaging

Concepts
So far, we’ve covered the core concepts that we recommend you

understand before you start building your first MSIX packages.

Going forward, we’ll explore the options you have when application

compatibility issues arise, how you can customize your enterprise

deployments and what scripting options MSIX gives you.

Digital Signing
One of the main benefits of MSIX is its security-driven architecture. This

is provided first by the app container and second, by the fact that each

MSIX package carries a digital signature.

Over the last 20 years, no matter the packaging format (a simple zip,

MSI, EXE, App-V, etc.), the use of digital signing was always considered

an optional procedure by 99% of the packaging teams. This is different

now.

Remember! All MSIX packages must be digitally signed. You will see

that the OS has a setting called “Developer Mode” that allows for

unsigned MSIX packages to be installed -- but, this setting is not

intended for production use.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 72

Why should you sign an MSIX package?

When deploying an MSIX package, the operating system uses the digital

signature to confirm that it can trust the original owner or builder of the

package. The digital signature is the standard method to ensure a

package was not tampered with.

Digital signing involves attaching a hashed value of the contents of the

package file to an “alternate stream” of the file to validate that the file

contents have not changed since signing.

Note: When a file is digitally signed, applying the signature is always

the last step.

Because the signing process uses the private key from your certificate

as a secret for the encryption algorithm, nobody else can alter the file

without invalidating the signature. Without your private key (and private

key password), no one is able to re-sign the package file with your

certificate.

If an attacker gets his hands on the package and adds a malicious file

inside, it will break the signature. Without your certificate, the attacker

cannot digitally sign the package and the system will automatically

reject it.

This forces customers to manage which certificates they will support

on their systems, a topic we will discuss shortly.

How to sign an MSIX package?

Generally, applying a digital signature is done by invoking a tool like

Signtool.exe from the command line. In its command line, you can

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 73

specify the files you want to sign, the certificate used for signing, and

other configurations.

One important concept to understand is that Signtool reads a field

called “Publisher” from the AppXManifest.xml file and compares it to

the field called “Subject” in the certificate. The purpose of this

comparison isn’t clear, but as we usually package many or all of our

packages using the same certificate, this means that we must generate

an AppXManifest file to match what is in the certificate.

Traditionally, this is in the form of a string like “CN=Company Name”.

Microsoft’s own packages are signed using a certificate with a subject

format resembling “CN=Microsoft Windows, O=Microsoft Corporation,

L=Redmond, S=Washington, C=US”.

To make this process seamless, packaging tools similar to the

Microsoft Packaging Tool and Advanced Installer, and most of the

package authoring tools used by developers, provide a helpful GUI that

enables package signing. In the end, they all abstract the command line

options behind an easy to use GUI to save you time.

Configuring the signing tool is out of the scope of this chapter as this is

documented in the user guide of your preferred packaging tool. What

you need to understand is where to get your certificate from and how

that affects your package. And we'll go into this now.

Where do I get a certificate from?

Windows recognizes certificates if it finds information about them in

the system’s certificates manager (certmgr.exe).

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 74

You generally have two options to get a certificate to be recognized by

the system.

1) You generate a self-signed certificate and pre-deploy it onto the

machines where you want to install the application that you will

sign. This certificate can be deployed by your IT team to ensure

all the machines from your enterprise trust the packages signed

with that certificate.

In an enterprise environment this certificate creation and

deployment may be controlled through PKI (Private Key

Infrastructure). Sometimes, Group Policy is also used for the

distribution.

2) You purchase a code signing certificate from a trusted

Certificate Authority (CA) vendor, like Verisign, Comodo, Thawte,

etc. Microsoft keeps an up-to-date list of the verified certificate

vendors that are pre-deployed within the OS. Purchasing a

certificate from one of these vendors guarantees that any

Windows OS will see a valid digital signature applied to your

package. This is how most software vendors digitally sign their

applications (MSIs, EXEs, etc.).

Unless you plan to distribute the package yourself, using a

website, it is unlikely that you will need any level of "Extended

Validation" when getting your certificate from a trusted vendor.

So, the most economic option will suffice.

3) You can use the Azure Code Signing Service. Although it is a free

service at this moment, you must have some kind of Azure

tenant (including Office365) to be able to use it. Your Azure

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 75

administrator will need to enable the service and instruct you on

how to use it. Certificate validation is also provided by Azure, but

only in cases when the user is logged in with Azure credentials

for your tenant.

How to protect the Certificate with a password

When you get your certificate, you will need to extract the signing

format out to a file with a .pfx file extension. When you do this, it is very

important to add a password to the file when performing the extraction.

This ensures that the .pfx file cannot be used to sign any files without

providing the required password.

The password itself should be kept safely; available only to those that

need it and can be trusted. For example, you would typically not give the

password to a third party packaging company that you work with.

Instead, you should use a cross-signing technique to allow them to sign

the package using an untrusted certificate, so that you can later re-sign

it with a trusted one.

Certificate Timestamps

As you can probably imagine, certificates expire. While you can control

the expiration date of certificates that you privately generate, those

purchased from a public CA (Certificate Authorities) have a short life-

span - typically ranging from 1 to 3 years, depending on the price.

Important! If you don't add a timestamp during the signing process,

the package will be considered invalid when the certificate expires.

This expiration would prevent any new installations of the package,

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 76

although it shouldn't affect end-users that already have the package

installed.

To prevent this, Signtool supports adding a timestamp to the signature.

This involves having Signtool communicate with a public CA timestamp

authority to validate the actual time of the signature, and storing that

information in the file alternate stream with the certificate information.

This validates that the file contents have not changed since you signed

it, and that the signing occurred while the certificate was still valid. This

process requires the trust of a CA providing that timestamp, preventing

you from just turning the clock back on the machine used to perform

the signing.

With the timestamp applied, the package can be installed even after the

certificate expires.

Currently, all public CAs that we have reviewed support using their

timestamping service (although usually they include a warning about

preventing Denial of Service attacks if you try signing too often).

A common reference used is: http://timestamp.digicert.com.

Some other vendors will add “/rfc3161” to the end of their URL.

Package Support Framework
Running Win32/WPF applications inside a MSIX container is a different

paradigm. While there are benefits, the container also can cause issues

with applications when you simply repackage them without making

changes to the application source.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
http://timestamp.digicert.com/

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 77

To help with the MSIX transition, Microsoft has created the Package

Support Framework (PSF) -- an open-source framework that enables

you to apply runtime fixups for issues that might appear when migrating

legacy applications.

Conceptually, the PSF works using fixups that are injected into

applications to modify the application behavior, as shown in the

following diagram:

Integrating the Package Support Framework

Inside the Package Support Framework (PSF)

The official Microsoft release for the Package Support Framework

(PSF) is available on GitHub - MSIX Package Support Framework41.

Under the hood, the Package Support Framework uses the Detours42

technology, an open-source framework for handling API redirection and

hooking. Aside from allowing you to move forward in instances when

41 https://github.com/microsoft/MSIX-PackageSupportFramework
42 https://www.microsoft.com/en-us/research/project/detours

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://github.com/microsoft/MSIX-PackageSupportFramework
https://github.com/microsoft/MSIX-PackageSupportFramework
https://github.com/microsoft/MSIX-PackageSupportFramework
https://www.microsoft.com/en-us/research/project/detours
https://www.microsoft.com/en-us/research/project/detours

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 78

you can't access the source code, this technology will also help make

your application smarter.

With this framework, you can either choose to use predefined fixups or

create a new fixup yourself. Since creating custom fixups is more of a

developer matter, we will limit our focus on how to use the predefined

fixups.

To start using PSF inside your MSIX package, you don’t need the entire

software that is in the GitHub repository for the PSF, as this includes

additional content to help with testing the PSF itself.

These are the main resources that must be included into your MSIX

package in order to use the PSF:

● PsfLauncher - Necessary to use the PSF.

● The PSF runtimes - these should be included depending on your

application’s architecture

● A config JSON - specifies and configures the fixups used by your

application

● The fixups DLL(s) - predefined or any custom ones you might

build

Commercial packaging tools like Advanced Installer, InstallShield, and

RayPack provide direct integration with the Package Support

Framework and take care of including the binaries listed above semi-

automatically (you still need to perform configurations in their GUIs).

If you're using the Microsoft MSIX Packaging Tool, you will probably

want to use a free third-party tool that we mentioned above called

PsfTooling to provide a GUI tool to inject and configure pre-built PSF

components.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 79

Once you have defined the traditional app form, either by a recapture or

by building an installation ingredient list, you would then add the

appropriate PSF file to the package, followed by changing out a

shortcut, and adding a configuration file that tells PSF what to do. Most

of the tools mentioned above do this automatically.

Using the PsfLauncher

In essence, you will need to replace the traditional shortcut .ink file

added by the application installer with a new one. The old shortcut

pointed to a target executable (possibly with command-line arguments,

a working directory, and an icon). Your new shortcut will replace the

target executable with a copy of the PSF launcher executable.

This PSF launcher can have any name you want. For example, the

PsfTooling kit injects a file named like PsfLauncher1.exe while

Advanced Installer injects a file called AiStub.exe. Sometimes, we need

to use alternate when a package contains more than one shortcut as

MSIX restricts any individual package from having two shortcuts to the

same target file.

The configuration file (config.json) is used to inform PSF launcher what

the real target application is and how to start it. The launcher starts the

real target EXE and performs DLL injection for a fixup to be applied. This

config file specifies what fixups should be injected into which target

processes and also provides the behavioral configuration needed for

the specific fixup. A utility DLL called “PsfRuntime” is used by both the

launcher and injected into the target to make all of this work.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 80

The startup sequence for this is depicted in the image below, where

FileRedirectionFixup.dll is injected into the target executable process.

For example, when an application is trying to write in its installation

folder (an action forbidden by the MSIX standard), the runtime fixups

redirect the call to a new location under AppData.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 81

How Does Package Support Framework Work

In addition to launching the target application, the PsfLauncher may be

configured in the Json to support command line arguments, the

working directory, scripts, and PsfMonitor.

How to determine the needed fixups

The most difficult part of using the PSF is knowing when and what you

need it for. Determining the fixups that your application requires can be

a very time-consuming process.

Some of the third-party vendors include capabilities in their tooling to

provide analysis of the traditional package before you start packaging

for MSIX. Currently, none of these tools appear to provide a complete

analysis, but they can provide useful information.

This means that you will have to invest in your own efforts to track your

app’s compatibility issues. And for the most part, that means creating

packages and testing.

To help with that, you have a few options commonly used:

● Use the PSF tracing dll, PsfTraceFixup, inside your package to

show what are the Windows API calls that your application

makes.

○ This special fixup traces points that you might need to

modify in application activities by using the other fixups.

○ The fixup supports two output forms.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 82

■ One is the output to the debug console port -- and

you need to use a tool like DebugView to capture

and view the output.

■ The other form is to an event log -- and you need

to use PsfMonitor (also part of the PSF) to

capture and view the output.

■ These logs are also automatically parsed by

Advanced Installer, simplifying the debugging

process.

● Other commercial tools, like API Spy Studio, also target

monitoring at the Windows API level. These tools generally have

a wider coverage of the Windows API than the PsfMonitor has,

however this extra detail may be either a blessing or a curse (as

it could overwhelm you with information about API calls that the

PSF fixups are not designed to fix).

● Process Monitor and ProcessExplorer (and similar).

○ Process Monitor shows the same file and registry

captures as the API captures above, except that the

capture is performed below the MSIX Runtime, which

may have already made changes to the original request

from the application.

○ Process Explorer is not a tracing utility, but it can be used

to help understand command line arguments, process

bitness, loaded modules, and kernel objects.

Depending on your needs, the pre-existing fixups can be added to your

package, or you may have to create/code your own fixup.

Here are the most common types of issues, and how they are

addressed via PSF are given here:

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 83

Issue Type Issue Description(s) Fixup Type

Shortcuts Issues with supporting command line

arguments, and specifying a working

directory. Also, a package cannot have

two shortcuts to the same .exe file

(solvable by having separate copies of

the launcher calling the same target

.exe).

PsfLauncher

Scripts Applications sometimes require

modification either as part of the

installation, or prior to use by the end-

user. Generally, these modifications

are based on the environment

(Machine, OS, User, or other).

PsfLauncher

Missing

Files

Although files in certain VFS folders

may be present in your package, some

like LocalAppData, will not be seen

without a fixup.

FileRedirectio

nFixup

Writing to

Package

Files

The application cannot write to or

modify files in the package without a

fixup that makes a copy for the

application.

FileRedirectio

nFixup

Dll Not

Found

The application may have difficulty

finding dlls that are part of the

package.

DynamicLibra

ryFixup

Writing to The application cannot write to or RegLegacyFi

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 84

Registry modify the machine portion of the

registry. It may also have difficulty

under the HKCU if the app asks for

more permissions than it really needs.

xups

Missing

Environment

Variables

The application cannot see new or

changed values to environment

variables created or modified in the

package.

EnvVarFixup

Predefined Fixups

In addition to the launcher, the Package Support Framework contains

several predefined fixups described below.

ElectronFixup

Electron Apps is used to help apps originally developed as Electron

Apps to operate in the MSIX container.

FileRedirectionFixup

The File Redirection is used to solve many file-related issues that could

occur.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 85

● The FileRedirectionFixup acts as an aid, allowing the

containerized application process to have visibility of files that

were captured under certain VFS folders.

The MSIX runtime generally provides an overlay allowing to

check the equivalent VFS path inside a package when an

application requests a file of a certain path. Unfortunately, there

are VFS folders in the package where this does not apply.

Originally the AppData, LocalAppData, and CommonAppData

folders were not mapped on this overlay until Microsoft added

CommonAppData mapping.

The FileRedirectionFixup can provide the additional missing

mapping through the use of copy-on-access (described below).

● The FileRedirectionFixup allows the application to write to

package files.

MSIX protects the package files, preventing any corruption to

the files: a feature sometimes referred to as "immutability". But,

applications often need to write to files contained in the

package, either to store settings or data.

The FileRedirectionFixup can use copy-on-access to create a

user private copy of the file and allow that copy to be written to.

● The FileRedirectionFixup implements a copy-on-access for

package files and a redirection for access to the copied area.

(Advanced Installer handles this automatically)

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 86

By default, the files are copied to a package's specific location in

the user’s LocalAppData\Packages folder, but this location can

be specified using a mapped driver or server share location

(specifying the user’s AppData\Roaming folder is not possible

due to MSIX limitations).

This allows the application to see areas of the package that are

normally hidden, and to make file changes as needed.

Additionally, with the FileRedirectionFixup in use, any future

attempt by the application to reference the file, will first detect

the copied file as a new mapped layer on top of the packaged

one.

DynamicLibraryFixup

Dynamic Library Loading - Used to make sure that the application can

find dlls that are in the package.

The MSIX runtime does not implement two of the most important

methods for an application installer to specify additional folders to find

dll files:

● Modification to the system PATH environment variable.

● AppPaths registration.

The DynamicLibraryFixup allows for the registration of package dlls in

the Json based configuration, letting the intercept to cause dll loading

to always find the dll in the package.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 87

RegLegacyFixups

RegLegacyFixups is intended to be a place for several types of fixups

involving the application registry access. As it is relatively new, we

expect that it will be updated over time. Currently, it has two types of

fixup rules that may be applied as needed.

● Registry Permissions - Used to modify application registry

requests to the permissions allowed under MSIX.

Often an application might open a registry key or item with more

permissions than it really needs. Especially for HKCU based

items, this could be done in traditional applications, but not

under MSIX due to immutability implementations in the MSIX

runtime. This intercept rule can target certain types of SAM

permission requests made when accessing the registry.

Assuming the application was asking for permissions it did not

need, the Registry Permissions solves the problem. If the app

later attempts, in a subsequent call, to use those unavailable

permissions on the object, the call will fail. But even so, this

might still solve your problem as developers tend to specifically

check for permissions when executing such requests, so they

handle any eventual errors better.

● Fake Delete - Used to trick the application into thinking that a

registry item or key has been deleted.

We have found some apps that use the registry as a scratch pad

for temporary storage, and then try to delete the entries as part

of shutting down. As the MSIX runtime does not permit these

deletions, using this tool to "lie" to the app could solve the issue.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 88

EnvVarFixup

Environment Variables - Used to turn User Session or System scoped

environment variables into Application scoped ones. This affects only

processes running inside the container, so it does not help with things

such as Path variable changes.

The fixup supports registering the environment variable name and the

value inside the JSON configuration, or alternatively, registering the

name in the JSON and the value in the package registry. Both methods

allow processes inside the container to see the value, and the

alternative method supports apps that want to update the value at

runtime.

Applying the PSF

Although Microsoft offers the Package Support Framework as an open-

source kit on its GitHub page, they do not provide any additional tools to

make it easy to integrate it into your packaging and debugging workflow

-- and you are left with cobbling up your own workflow using

independent pieces, or resorting to third party tools.

Third party packaging tools tend to have a more integrated and holistic

approach to simplifying and speeding up this process. Be aware that

third party products may either use an older version of the PSF than the

one available on GitHub, modified versions of prebuilt fixups, or could

include additional kinds of fixups that are not available in the GitHub

source.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 89

Applying PSF for MSIX Packaging Tool

If you are using the MSIX Packaging Tool, the best way to leverage the

Package Support Framework within your MSIX package (without having

to do everything manually) is to use the free PsfTooling kit43, built by

Tim Mangan.

This tool can apply and configure all of the prebuilt fixups described

previously, with the exception of the ElectronFixup. It also supports a

standard fixup called WaitForDebugger, which is useful for developers

that need to debug their code or for debugging the PSF itself.

Additionally the tool can detect and modify the installed application to

improve compatibility by aligning the application component

registration to methods supported by the MSIX Packaging Tool.

Applying PSF with Advanced Installer

Advanced Installer Express - the free, featured-limited edition of

Advanced Installer - offers support for additional fixups and

replacements for predefined fixups: these can be easily configured and

integrated into your package by using the “Trace App” functionality.

The following equivalent replacements should be considered:

● Trace App

● WorkingDirectory

43 https://www.tmurgent.com/appV/en/resources/tools-downloads/msix-tools

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.tmurgent.com/appV/en/resources/tools-downloads/msix-tools

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 90

● Command-line arguments management

● Run custom PowerShell scripts

If you encounter any situations for which a fixup is not available,

contact the Advanced Installer Support team over email at

support@advancedinstaller.com. They will analyze the problem and try

to provide a fixup for the community, if possible.

Advanced Installer Express edition has a built-in debugger that traces

your app and tells you what known fixups are required. Check out this

video demo at Advanced Installer - Package Support Framework44.

Applying PSF with other Packaging Vendors

Flexera AdminStudio and RayNet RayPack Studio are tools that also

provide an integrated approach.

Config.JSON and Config.XML

The Package Support Framework uses the Config.Json file inside the

package in order to configure the Psflauncher and Fixup components.

The choice of using json inside the package appears to have nothing to

do with traditional json usages. There are no web servers or rest

interfaces in use. It is just a structured file with configuration items and

values.

44 http://www.advancedinstaller.com/package-support-framework

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
mailto:support@advancedinstaller.com
http://www.advancedinstaller.com/package-support-framework?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 91

One important rule you must follow in json is that item names (not

values) are always in CamelCase, which means it starts with a

lowercase letter and uses an uppercase letter only when it would be a

new word if spoken out loud (e.g. “workingDirectory”).

The config files make a heavy use of RegEx in the configuration values.

RegEx is a pattern matching syntax, that instructs the reader to use a

configured value string as a pattern to match against. The RegEx syntax

is different from the pattern matching syntax used by the Windows

command processor. If you need to further understand the RegEx

syntax, you can start with the information available here45 and look for

the Ecml variation of RegEx.

In addition to the Json format, Microsoft defines an xml version of the

file that may be used externally by tools responsible for producing the

package. Those tools would transform the xml format into Json as part

of the packaging process. To many, xml may be a better choice as it is

self describing and makes it easier to implement validators against a

schema. This is the main reason Microsoft specifically defined it to be

used by these tools, even if the PSF doesn’t use this form itself.

The config file format consists of two major sections, Applications and

Processes:

Config Applications Section

The Applications section is used to configure the launcher. The

launcher is usually configured elsewhere to become the target of an

entrypoint into the container. Generally, we consider this the

45 https://en.wikipedia.org/wiki/Regular_expression

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://en.wikipedia.org/wiki/Regular_expression

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 92

replacement target of a shortcut, but it can also be the target of other

modified registrations in the AppXManifest, such as file type

associations or URL protocol handlers.

The Applications section consists of an array of application items.

The identification of the application is performed by matching the name

of the launcher process against the id field of the application item “id".

When using the Microsoft MSIX Packaging Tool with PsfTooling to add

the PsfLauncher as defined on GitHub, the launcher uses an

undocumented algorithm against the process name to perform this

comparison. Generally speaking, it drops the “.exe”, turns it into

uppercase, and changes any numeric character into the alphabetic

English language equivalent (in Pascal Case). For example, the process

name “PsfLauncher1.exe” would match the id “PSFLAUNCHEROne”.

Note. Other packaging tools may use a different algorithm in their

copy of the PSF.

When there is a match found, the rest of the fields of the application

item will be implemented by the launcher process.

This includes the following items:

● monitor - An item with subitems to specify a monitor program,

like PsfMonitor, to launch first.

● scripts - An item with subitems to specify a start script to run

before launching the target application, and an end script to run

when the target application ends.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 93

● executable - The package relative path to the ultimate target

application file. This may be an .exe file, but any other file type

that has a local file type association may be used.

● workingDirectory - A full or package relative folder to use as the

working directory for the ultimate target application. If specified

as an empty string, it will use the path containing the target

application.

● arguments - Additional command line arguments to be

appended to the command line when launching the ultimate

target application.

Config Processes Section

The Applications section is used to configure PSF Fixups on a per-

process basis. The section consists of an array of process entries, with

two subitems:

● executable - The value is a RegEx pattern string to match against

process names.

● fixups - The value is an array of fixups. Each fixup has additional

subitems:

○ dll - The value of this item is the name (without path) of

the dll fixup to be injected. If not found by that name, it

will attempt to add a 32 or 64 (depending on the bitness

of the running process) to the base name and try again.

Thus “FileRedirectionFixup.dll” can match

“FileRedirectionFixup64.dll”.

○ Config - The value is a collection of further subitems,

dependent on the needs of the particular fixup.

The best way to begin to understand the syntax further might be to look

at some example config files of existing packages.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 94

Inspecting Fixups that are in a Package

Do you want to know if a package uses PSF fixups? Here are a couple of

options to inspect it.

The first one is simple, extract the MSIX package using 7-Zip or a

similar tool. In the package contents, you should notice the PSF-specific

resources (psf launcher, dlls, & the config.json file).

Note. Opening up the package in a zip utility will break the package if

saved, so remember to always use a copy of the package!

To understand the exact configuration of the fixups, if present, open the

config.json file. Often, this file will be at the root folder of the package,

but it could also be stored in the folder with the primary executable (eg.

under VFS\ProgramFilesx64\VendorName).

Here is an example:

A Json file that causes the FileRedirectionFixup to be injected into the

target process and configures the file redirection for all files with the

extension “.log” will look like the one below.

{

"applications": [

{

"id": "PSFLAUNCHER1",

"executable": "SampleApp/Sample.exe",

"workingDirectory": "SampleApp/"

}

],

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 95

 "processes": [

 {

 "executable": "Sample",

 "fixups": [

 {

 "dll": "FileRedirectionFixup.dll",

 "config": {

 "redirectedPaths": {

 "packageRelative": [

 {

 "base":

"SampleApp/",

 "patterns": [

 ".*\\.log"

]

 }

]

 }

 }

 }

]

 }

]

}

A sample configuration JSON file

The JSON file uses Regular Expression (RegEx) patterns in many of the

fields. The flavor used is known as the ECML variety that is also used in

JavaScript. So the “.*\\log” in RegEx means a file that starts with

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 96

anything, but ends with a case sensitive “.log” file extension. Microsoft

describes the RegEx language in this documentation46.

Another useful tool for inspecting fixups is “MSIX Hero”. This free

application informs you about any PSF fixups present in the package.

Here is how it looks when inspecting the same MSIX package.

46 https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-
expression-language-quick-reference

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 97

The same sample configuration file - interpreted by MSIX Hero

For the latest updates on the Package Support Framework, join the

Microsoft PSF community47.

47 https://techcommunity.microsoft.com/t5/package-support-framework/bd-
p/Package-Support

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://techcommunity.microsoft.com/t5/package-support-framework/bd-p/Package-Support

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 98

Scripting
A traditional installer unpacks file and registry items and spreads them

around the system as required. Under MSIX, these items are

unpackaged into an isolated area, and the package Manifest describes

any integrations that are required to be present outside of this isolated

area (such as shortcuts and file associations).

Traditional installers also tend to perform customizable actions,

investigating the environment and making changes based on what it

finds. Even if the application vendor’s installer doesn’t do this, quite

often the larger organizations that distribute applications to many users

tend to either repackage these customizations, or add scripts to do so.

These customizations may be used to perform licensing operations,

configure appropriate back-end servers (especially for dev/test/prod),

or determine if integrations with additional applications are required.

Out of the box, MSIX does not support installation time customizations,

but when you use PSF, you enable scripting. PSF Scripting is configured

and controlled via the Json configuration file and implemented by

PsfLauncher.

Scripts may only be triggered by two events: the start and the end of a

process. Although there is no “install” script trigger, the “RunOnce”

feature of the start trigger provides the effect of an installation script.

The RunOnce feature writes a small marker in the Application Registry

Hive so that subsequent launches will not run the script again.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 99

The scripts for your packages must be written in PowerShell as PS1

files, and if you need to use the “wait” and “stop on error” features., the

script must return a “0” to indicate success.

In a script triggered by the start event, the "wait" feature makes the

launcher wait for the script to run to completion before starting the

target application. When "wait" is requested, there is a timeout value

that must be provided (in milliseconds) and is used as the maximum

wait time. If this time is exceeded, it is considered an error, and the

application will only be launched at that time if “stop on error” was not

specified.

Note: You may want to reference file locations in your script that are

dependent on the package installation location (which is dependent

on the package name and AppX Volume mounting) or where the

redirected user profiles are (dependent on the package name and

user name).

To help you with this, PsfLauncher supports two pseudo-variables that

you can use in the Json file as script arguments. These are:

Pseudo-variable Meaning

%MsixPackageRoot% The root folder of the installed

package.

%MsixWritablePackageRoot% The user’s LocalAppData is for

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 100

file redirection for this package.

The PsfLauncher will decode these arguments which can be passed

into your script. However, your script should not contain these syntaxes

as "environment variables" because they are not; the PsfLauncher must

do that decoding and pass the equivalent path as the argument to your

script.

PsfLauncher scripting requires an additional file to be placed in the

package. This file named “StartingScriptWrapper.ps1”, is part of the PSF

and should be placed in the folder alongside the copy of the

PsfLauncher. This Ps1 file is used for both the start and the end trigger

scripts and its name can not be changed. Also, the Json configuration

will only reference the additional Ps1 file that you provide.

PsfLauncher will call StartingScriptWrapper.ps1 with your script

filename and arguments from the Json added as command line

arguments.StartingScriptWrapper will manage the run of the script for

you.

To allow these PowerShell scripts to be executed, you need to adjust

the execution policy. You can do this through a Group Policy Object

and set it to Unrestricted or RemoteSigned.

There is also an option to request ByPass mode on the script,

however, you should not use this if the GPO is in place.

System changes to the execution policy must be performed on both

x64 and x86 PowerShell executables.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 101

Some packaging tools, like Advanced Installer, provide you with a

predefined support to visually add and configure the scripts in your

package, as part of their integration with the Package Support

Framework.

Adding PowerShell scripts inside an MSIX, with Advanced Installer

MSIX Modification Packages
MSIX Modification Package is a type of MSIX package format

introduced by Microsoft with the goal of decoupling customizations

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 102

from the main application. Launched with the release of their MSIX

packaging format, the MSIX Modification Package is an MSIX package

meant to store the customizations of the application.

Windows 10 1809 is the first version to support MSIX Modification

Packages.

Note. Make sure to use Windows 10 1809 or higher if you want to

take advantage of the MSIX Modification Package. You can find more

details on MSIX supported platforms here48.

Is the MSIX Modification Package the new MST

equivalent?

If you are familiar with Windows Installer technology, then you know

that, just as with the MSIX Modification Packages, Transform files

(MSTs) are meant to store the customizations of an MSI package. But

that is as far as the similarities go for them.

MST files can be applied to the base MSI only at the time of installation

and through the same msiexec command49.

48 https://docs.microsoft.com/en-us/windows/msix/supported-platforms
49 https://www.advancedinstaller.com/user-guide/msiexec.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/windows/msix/supported-platforms
https://www.advancedinstaller.com/user-guide/msiexec.html

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 103

For a broader perspective, let’s compare MSIX Modification Packages

with Windows Installer Patches (MSPs). Although an MSP is applied to

the MSI in the same way that an MSIX Modification Package is applied

to the MSIX - there are two differences:

● It cannot be installed on its own

● It can be applied at any time (at installation time or later).

MSPs are meant to store other resources (bug fixes, security updates,

and hotfixes), but not customizations.

In summary, the MSIX Modification Package is similar to MST because

they both are meant to store customizations and, because they both are

packaged separately from the target package.

A deep dive inside the manifest

This manifest section is always located in the AppxManifest.xml file of

a modification package.

<Properties>

 <rescap6:ModificationPackage>true

</rescap6:ModificationPackage>

</Properties>

Going forward, there is a MainPackageDependency entry which is

included within the Dependencies section of the MSIX Modification

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 104

Package manifest file, but not in the manifest file of the target

application. It is called “TargetAppSample” in our example below.

<Dependencies>

 <TargetDeviceFamily Name="Windows.Desktop"

 MinVersion="10.0.17701.0"

 MaxVersionTested="12.0.0.0"/>

 <uap4:MainPackageDependency Name="TargetAppSample"

 Publisher="CN=Contoso Software,

 O=Contoso Corporation, C=US"

/></Dependencies>

This comes with two attributes:

● Name – it must match the identity Name of the target MSIX

application.

● Publisher – it does not have to match the identity Publisher

of the target MSIX application and this information could be

missing if the publisher is the same.

Also, since the MSIX Modification Package does not contain a full

application, it does not have an entry point. In turn, there is no

Application node within the manifest file of the MSIX Modification

Package.

How does an MSIX Modification Package work?

One of the nice perks of decoupling the customization from the main

application is that you will have two separate packages with no explicit

relationship between them. And, since it is a separate package, you will

not have to recreate the MSIX Modification Package with the same

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 105

customizations each time there is a new update of the main application

– obviously, as long as the customizations stored in the MSIX

Modification Package are still applicable.

Not only do you not need to recreate the MSIX Modification Package,

but there is no need to remove and reinstall it when a new update of the

main application comes in. The customization stored in the MSIX

Modification Package will apply successfully to the new MSIX package

for the main application once the updated target MSIX package gets

installed.

However, there's a small catch. The MSIX Modification Package doesn't

contain a full application, thus it can't be installed on its own. The MSIX

for the main application is required to be installed on the device prior to

the MSIX Modification Package installation. If you mix-up the steps, you

will be presented with an error like the one shown below:

An MSIX Modification Package cannot be installed before the target application

When an MSIX Modification Package is installed, its content will overlay

(at runtime) on top of the resources from the target MSIX in a way that

it will look like one application for the operating system and the main

app.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 106

Important! The overlay does not work for files outside the VFS folder.

Any changes outside the VFS are ignored.

Let's do a small exercise. Imagine we have an executable file that reads

the content of a .config file placed next to it and displays the outcome

on the screen. Our example application is being packaged into MSIX.

Now, we want to replace the .config file with a new one (customized for

our enterprise environment) using an MSIX Modification Package.

Note. For step-by-step instructions on how to create an MSIX

Modification Package, you can watch our video tutorial on creating an

MSIX Modification Package using the free Advanced Installer Express

edition50.

Now, take the MSIX Modification Package created with the new .config

file included within and install that on a device where the target MSIX

package is installed. App Installer will prompt a message to let you

know that it will modify the target application.

50 https://www.advancedinstaller.com/msix-modification-package.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-modification-package.html
https://www.advancedinstaller.com/msix-modification-package.html

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 107

App Installer message when installing an MSIX Modification Package

Once the MSIX Modification Package is installed, if we launch our

application, the executable will now read the content of the new .config

file included within the MSIX Modification Package.

If you go to “App Settings” for the MSIX Package, you should find the

MSIX Modification Package listed under the “App add-ons &

downloadable content” section, here is an example for a target package

called “MyApp” and its modification package “MyModificationPackage”:

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 108

List of MSIX Modification Packages installed on the device for a specific
application(“MyApp”)

Or you can achieve the same output by using Get-AppXPackage

PowerShell cmdlet:

PS C:\Windows\system32> get-appxpackage -name "My

Company. MyApp"

Name : My Company.MyApp

Publisher : CN=Horatiu Vladasel

Architecture : X64

Resourceid :

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 109

Version : 1.0.0.0

PackageFullName : My Company.

MyApp_1.0.0.@_x64_r21nowlrc5s2y

InstallLocation : C:\Program Files\WindowsApps

 \My Company. MyApp_1.0.0.0_x64_r21nⓇw1rc5s2y
IsFramework : False

PackageFamilyName : My Company.

MyApp_r21n@wirc5s2y

Publisherid : r21now1rc5s2y

IsResourcePackage : False

IsBundle : False

IsDevelopment Mode : False

NonRemovable : False

Dependencies :

{MyCompany.MyModificationPackage

_1.0.0.0_neutral _r21n@wirc5s2y}

IsPartiallyStaged : False

Signaturekind : Enterprise

Status : OK

Additionally, you can get a list of all installed MSIX Modification

Packages using the following PowerShell cmdlet:

Get-AppPackage -PackageTypeFilter Optional

The main MSIX and the MSIX Modification Package are installed in

separate folders under “C:\Program Files\WindowsApp”. When the

application is launched, it will consider (“see”) both packages within a

single container.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 110

How an MSIX Modification Package is loaded by the main application

Reminder: Please note that C:\Program Files\WindowsApp folder is

read-only and system protected.

For debugging, you can launch an external EXE (eg.: regedit.exe or

cmd.exe) inside an MSIX container using Invoke-

CommandInDesktopPackage51 PowerShell cmdlet.

51 https://docs.microsoft.com/en-us/powershell/module/appx/invoke-
commandindesktoppackage

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/powershell/module/appx/invoke-commandindesktoppackage
https://docs.microsoft.com/en-us/powershell/module/appx/invoke-commandindesktoppackage

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 111

Alternatively, you can use Hover52 - a free tool, built by the Advanced

Installer team, which allows you to launch natively installed applications

inside an MSIX container with just a double-click.

Basically all you have to do is to launch a cmd.exe process either using

the above PS cmdlet or Hover and then navigate to the folder of the

target MSIX package and execute a dir command to see the contents of

the virtual folder, just as your application would “see it”, i.e. with the

contents of the modification package merged inside.

Microsoft did a great job here, but there is still room for improvement.

The MSIX Modification Package is an excellent opportunity for

enterprises to handle the customizations of each of their MSIX

packages separately.

What makes it valuable is that these customizations are now decoupled

from the main application. This will save a lot of time, effort, and budget

for IT professionals when packaging and deploying applications.

Application Updates

MSIX deployment utilizes the concept of matching the Package Name,

as referenced in the internal AppxMainifest.xml file, along with version

numbers to enable good application upgrade and downgrade scenarios.

An upgrade package may be created using one of two methods:

52 https://www.advancedinstaller.com/hover.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/hover.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 112

Type Description

Edit existing
package

The original package can be opened for edit, modified,
and saved using a higher Version Number. Currently,
tooling vendors are supporting this scenario by using a
strict editor, which prevents recapture of an traditional
upgrade/patch installer. Edit scenarios involving
recapture (similar to how it is done in the App-V
Sequencer) is not precluded by the MSIX technology and
may become available in the future as well.

New
package

A completely new package can be created using the
same Package Name as the original package and a
higher Version Number.

When creating an upgrade package, some packaging tools use some

form of file naming that involves the Package Name. Some include the

Version Number in the package name by default and some do not. Care

should be taken to properly identify the package filename so that each

version is unique.

The MSIX installation methods in the OS will recognise a situation

where a different version of the same Package Name is being installed.

It is capable of performing both upgrade and downgrade operations.

By default, an upgrade or downgrade will cause the user preferences

data to be retained. After installation of this version, the previously

installed version will be removed for this user, and if no other user

profile on the system has the previous version published it will be

removed from the system completely.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 113

Thanks to single-instance download and storage, there are significant

performance benefits for a version installation. As these benefits are

based on file block hashes, they should be roughly the same no matter

which method for packaging the new version is used.

User Settings and Data Associated

with a Package
As end-users utilize the applications that we package and distribute,

they often make changes to the application settings, sometimes altering

or creating new data files.

With or without the Package Support Framework, MSIX implements a

strategy for redirecting file and registry activity (when supported) to an

area of the user’s local profile. This strategy is generally limited to the

scope of the structure of the package itself. In practice, writes to areas

outside of the package boundary are not redirected at all.

This allows for updates to the settings of a package file to be

redirected, even if the app writing a file to the Documents folder is not

redirected (unless your package includes files in the Documents folder).

The MSIX redirection is located in the end-users AppData\Local folder,

under a subfolder called Packages. Each package installed to the user's

device will have a subfolder using the package name. Under this folder,

there will be a large number of subfolders, and all the written

settings/data.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Packaging Concepts

 Powered by AdvancedInstaller.com 114

MSIX redirected file data will be placed under the

LocalCache\Local\Microsoft\WritablePackageRoot folder. Notice that

even if the app attempts to write to the end-users AppData\Roaming

folder, if that folder is included in the package coverage -- MSIX will

rewrite that file to this folder.

MSIX registry data will be placed in the SystemAppData\Helium folder

in the form of .dat files.

Keep in mind that UWP Programs (which can also be MSIX) use the

package folder structure and may place additional settings and data

files under the RoamingState folder of the package redirection area.

Getting Settings and Data Off the Local Profile

Scenarios like WVD, VDI, and SBC, require that user settings and data

be migrated to an area other than the local profile. Additionally, some

companies like to have physical desktops set up to support an instant

swap-out. This also requires ensuring that these settings and data are

redirected to off-box storage.

Traditionally, Roaming Profiles and/or Folder Redirection policies have

been used to help with these scenarios. More recently, additional User

Environment Management (UEM) products like Microsoft UEV,

AppSense, and FsLogix have become popular.

Such additional products can be effective in managing user data and

settings when MSIX is in use. There will be situations where the vendor

configuration for the MSI version of the application is identical to that of

the repackaged MSIX app, and other situations where the UEM product

rules will need to be altered to look for the files in this redirected area.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 115

Fundamental Deployment

Concepts
One of the big achievements of the first iteration of the Windows

operating system was the ability to easily install applications on a

desktop computer. By allowing non-technical consumers to install

applications, Microsoft helped set in motion an era of consumer

software development that still powers so much of our lives today.

The story behind the Windows application installation and deployment

has been evolving ever since. One could characterize the rough and

tumble marriage between Windows and applications as a struggle

between ease of use (for the end user) on one hand, and unsustainable

complexity of the underlying technologies and management practices

on the other.

From the development of basic installers, to the MSI framework, and

then application virtualization and containers, Windows has responded

to the rising tide of problems attributed to application deployment and

management. The most recent chapter in the story of application

deployment, as already mentioned, is the MSIX application package

format (“MSIX”).

One of the great improvements of MSIX is that the software installation

process is almost entirely isolated from the device state, which

significantly reduces the number of dependencies as well as the

unintended consequences experienced with older installers.

According to Microsoft, MSIX delivers an impressive 99% installation

success rate, making it one of the most predictable ways to deploy

applications in modern environments.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 116

The increased installation success rate and predictability of MSIX

comes with the added complexity of properly designing your unique

MSIX deployment package. Microsoft has invested heavily in the

technology to make sure it is suitable for a wide range of use cases, and

as a result, there are a lot customization options you need to be familiar

with.

Fortunately, for those of you that are new to MSIX, the options can be

highly managed, whereas for those of you with more experience, you

have access to power user features through more hands-on methods.

MSIX packages support not only installation and uninstallation, but also

additional features:

● Support upgrade/downgrade scenarios

● Support for Add-on packages (Modification packages containing

application configuration or plug-in modules).

● Support for referencing required external packages, such as

framework or vc library packages.

● Support for referencing needed external drivers that can be

triggered for installation by installing this package.

MSIX application package installation implementation support is built

directly into the operating system, however we may use different

methods to achieve package distribution and installation depending

upon the customer requirements:

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 117

MSIX Deployment

While the core of the Windows Operating System includes system level

components that ultimately are responsible for installing the package,

the OS also comes with many different built-in utilities and tools that are

used during deployment.

Different approaches to deploy MSIX packages will use different

combinations of these components and utilities, and the previous

diagram attempts to show the most common scenarios.

Some of these scenarios use new file types that we have not previously

discussed, so before we start covering the deployment scenarios, we

should discuss these file types.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 118

Deployment File Types for MSIX
● “.msix” and “.appx”. Previously[anchor link to “The MSIX

Package Layout”], the MSIX file format for “.msix” files was

discussed. The overall format is shared by both .appx and .msix

packages with differences in the AppXManifest file that make

the package be a UAP or MSIX package. In fact, most of the

utilities used to install the package don’t care which of these two

formats are used.

● “.msixbundle” and “.appxbundle”. Additionally, these OS utilities

also support the “bundle” formats “.appxbundle” and

“.msixbundle”. The bundle is also a compressed file with a

manifest, but also contains multiple .appx or .msix packages

within the bundle. The Manifest provides information used by

the installer to determine which of the internal packages to

deploy. For example, the two packages might be present for x86

and x64, or for seperate localization (languages), or operating

systems (windows versus android).

● The “Store License” file. Packages in the Microsoft Store

require a license file. This even includes the free packages in

the store. The license file comes in two forms, both xml and a

binary format. When an end-user is acquiring apps from the

Microsoft Store directly, the license file comes down with the

package in the background and is not seen by the end-user. In

scenarios where these packages are acquired centrally for

deployment, the Administrator may need to deal with this file

also. In addition to providing store-based licensing protections,

this file also is used to help with the detection and application of

updates to the package version.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 119

● The “App Installer” file. The App Installer File is an additional

Xml file used for certain types of deployment, especially when

hosting of the MSIX package occurs on websites. This file

usually points to the MSIX file, but also enables updates when

used to deploy the package outside of the Microsoft Store.

● VHD/CimFs. Used with MSIX AppAttach, MSIX files can be

converted to VHD files and mounted for fast deployment in VDI

like scenarios. CimFs, a new read-only disk format for better

performance, is expected to replace the use of VHD at some

point.

MSIX Package Installations
Some general principles apply to all forms of MSIX deployments.

Upgrades and Downgrades

MSIX identifies packages via the package family name field of the

package Manifest. For packages which use the same family name, the

version string is also used for identification.

The MSIX installation process recognizes upgrades of newer versions,

and will remove the older version when present automatically as part of

the installation.

Originally MSIX did not support downgrades, however this was added to

the OS support, and packages may now be similarly downgraded. To

better understand this behavior the following table will illustrate some

key points.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 120

Installed

(version)

Upgrade or Reinstall

version

Behavior Result

x86 (1.0) x86 (1.0) Reinstall Supported

x86 (1.0) x86 (3.0) Upgrade Supported

x86 (1.0) x64 (1.0) Reinstall Not

Supported

x86 (1.0) x64 (3.0) Upgrade Supported

x86 (3.0) x86 (1.0) Downgrade Supported

x86 (3.0) x64 (1.0) Downgrade Supported

The first scenario in the table illustrates what would happen if the

application needed to be re-installed in place. This sometimes happens

to fix applications and is a supported action.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 121

The next scenario shows an upgrade skipping application versions in-

between. With MSIX the application upgrades do not need to be applied

in sequence to upgrade an application.

In the next line we see the first consideration for changing the bitness

of the application from 32-bit (x86) to 64-bit (x64) as a reinstall. This

sort of upgrade or downgrade scenario is not supported as an reinstall.

The new version of the application would be considered a completely

new application installation that must be installed separately. The line

below illustrates how the upgrade is possible between bitness but

versions can also be skipped.

The last two lines illustrate the downgrade behavior, versions can be

skipped in a downgrade plus bitness changes to the application are also

supported.

Per User Installations

At the target system, MSIX package installations are performed on a

per-user basis. This differs from traditional MSI and Exe based

installers which supported the concept of either per-user or per-system

installations.

Even though all installs for MSIX are per-user, MSIX does have

something equivalent for the system level installation. MSIX packages

may be pre-provisioned on a system-wide basis. This adds all of the

package assets onto the system without performing the per-user

integration aspects, and then registers a trigger that will complete the

remaining installation integrations for the user whenever any user logs

in. Such pre-provisioning is appropriate for adding MSIX packages to a

standard image deployed to desktops.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 122

Standard User Installation

Due to the isolation of the MSIX format and strict control over

installation activities, including not allowing MSI Custom actions, MSI

installs may normally be performed without elevation by a user with

standard access rights.

The exception to elevation occurs if certain special actions are

requested, exposed through the Capabilities settings of the

AppXManifest. Currently only the inclusion of Windows Services

requires this elevation.

When elevation is not required, all of the local system interfaces used to

install the MSIX packages that are available to end-users, including

PowerShell and the App Installer App, do not prompt for elevation.

While this simplifies software installation activities when using manual

methods, it may also be of concern in the enterprise which depended

upon authorized installations to ensure compliance with vendor

licensing agreements, or to keep certain apps from only being accessed

by authorized personnel that need access to the data exposed by the

app.

Organizations making use of open file shares as part of the deployment

processes may need to review and update their deployment procedures

accordingly.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 123

Machines can use Group Policy to restrict the installation of

applications to only be from the Windows Store. Starting with Windows

10 1703 the policy resides in the following location:
Administrative Templates\Windows Components\Windows

Defender SmartScreen\Explorer\Configure App Install

Control

Beggining with Windows 10 2004 this setting moved to its current

location:
Administrative Templates\Windows Components\Windows

Defender SmartScreen\Explorer\Configure App Install

Control

To configure the policy, simply open a Group Policy editor and navigate

to the policy and after opening it follow the instructions below:

1. Enable the policy

2. Select how strict to enforce Store apps

3. Click OK to accept the changes.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 124

Intune supports this configuration and would be best configured using a

device restriction configuration profile. To access it go to the Endpoint

manager console location53.

53

https://endpoint.microsoft.com/#blade/Microsoft_Intune_DeviceSettings/Devi
cesWindowsMenu/configProfiles

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://endpoint.microsoft.com/#blade/Microsoft_Intune_DeviceSettings/DevicesWindowsMenu/configProfiles
https://endpoint.microsoft.com/#blade/Microsoft_Intune_DeviceSettings/DevicesWindowsMenu/configProfiles

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 125

When creating a new configuration profile be sure to create a device

restriction profile using the following procedure:

1. Change the platform to Windows 10 and later

2. Edit the Profile field to be Device restrictions

3. Click Create

In the App Store portion of the profile there is a setting labeled Apps

from store only. Use the drop down menu to configure the Smart Screen

settings for applications.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 126

While this setting is helpful for locking down the application installs on

the device it has an effect on administrator rights that may not go over

so well in a production environment. By using this setting, the

administrator of the device cannot install traditional Win32 applications

if the configuration is set to Store Only.

For Intune managed devices starting with Windows 10 2004, the device

can be configured to only allow local administrators to perform

application management tasks. The user can still install from trusted

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 127

sources such as the Windows Store or the Intune Company Portal app.

A custom policy can be built in the Intune console for turning on this

behavior.

To enable this configuration you will need to navigate to the Endpoint

Manager console for Windows device policies54.

Once there, you can create a custom policy to configure the setting.

1. Change the Platform to Windows 10 and later

2. Edit the Profile field to be Custom

3. Click Create

After you have created the policy and supplied a name for it you can

move on to the settings. When using custom policies there is the

potential for error since many of the settings need to be manually

54

https://endpoint.microsoft.com/#blade/Microsoft_Intune_DeviceSettings/Devi
cesWindowsMenu/configProfiles

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://endpoint.microsoft.com/#blade/Microsoft_Intune_DeviceSettings/DevicesWindowsMenu/configProfiles
https://endpoint.microsoft.com/#blade/Microsoft_Intune_DeviceSettings/DevicesWindowsMenu/configProfiles

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 128

inputted. As you can see with a new policy the contents are empty. Click

Add to add settings to the profile.

To configure the custom setting follow the steps below.

1. Give the setting a name

2. Put in the OMA-URI (this is case sensitive)

./Vendor/MSFT/Policy/Config/ApplicationManagement/BlockN

onAdminUserInstall

3. Set the Data type to Integer

4. Set the value to 1

5. Click Save when complete

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 129

For more information on the BlockNonAdminUserInstall setting see the

following Microsoft document55.

Application Package Signing

Each MSIX package that you want to distribute must be signed with a

code signing certificate that is trusted by the device or the installation

will fail. This behavior (set by design) is meant to prevent untrusted

code from being installed. While we covered the details on how to sign

packages in the Digital Signing section of the Fundamentals chapter,

55 https://docs.microsoft.com/en-us/windows/client-
management/mdm/policy-csp-
applicationmanagement#applicationmanagement-blocknonadminuserinstall

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/windows/client-management/mdm/policy-csp-applicationmanagement#applicationmanagement-blocknonadminuserinstall

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 130

those involved with deployment still need to be involved with digital

signatures.

In particular, if you have a business requirement to distribute an MSIX

package to people outside of your organization, make sure you obtain a

code signing certificate for your package from a major certificate

authority.

Otherwise, you can use your existing certificate server infrastructure to

issue a code signing certificate from your issuing certificate authority.

It takes a lot of work to set up a code signing process for your

applications and that can pose a significant problem when you

prototype MSIX applications and need to be more agile. While signing

your packages is the recommended best practice, there is another way

to install MSIX applications without code signing.

In Windows 10, you can enable developer mode56 on the device which

allows you to install unsigned MSIX packages. Many enterprise

environments will not enable developer mode on production systems as

a security precaution, so you may have to request a security policy

exception to use developer mode on a device.

The key point is that there must be a valid code signing certificate that

the device will use to trust the application. The application must then be

signed using the same certificate to complete the chain of trust.

Ideally, in-house packages will be signed with a digital certificate that

will be distributed to all appropriate organizational computers either as

part of the base image or applied via PKI. MSIX Packages obtained

from reputable third party vendors will most often be signed using a

56 https://docs.microsoft.com/en-us/windows/uwp/get-started/enable-your-
device-for-development

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/windows/uwp/get-started/enable-your-device-for-development

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 131

certificate obtained from a public Certificate authority, which might

automatically be trusted by your PKI.

When the certificate is not trusted, it is still possible to add the

certificate signature thumbprint to a system by right clicking on the

MSIX file for properties. From the Digital Signatures tab it is possible

(using elevation) to view and install the certificate on your system. The

certificate must be placed in the “Trusted Root Certification Authorities”

store of the Local Machine.

Using the App Installer App

Installing App Installer App

The App Installer application is now included with the operating system,

however earlier versions of the OS required it to be obtained and

installed from the Microsoft Store57.

The App Installer app was built to simplify the installation of MSIX

applications. With it, you can access a user-friendly double click method

to install applications and avoid the complexity of PowerShell

commands.

Another great feature of the App Installer app is that you get meaningful

error messages to help you diagnose installation issues. If there are

installation issues, the application is designed to provide error

messages that help diagnose the application installation issue.

For earlier versions of the OS, the App Installer App may be obtained

and installed from the Microsoft Store.

57 https://www.microsoft.com/en-us/p/app-installer/9nblggh4nns1

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 132

App Installer app available in the Microsoft Store

Alternatively, you can open the Windows Store app and search for “app

installer”. It should be the first application in the results.

Click Get to install the application. You may be prompted to sign into

the store if you have not configured the Windows Store with your

Microsoft account.

The application will download and install and no further action or

configuration is required to use the features of the App Installer.

Application Management via App Installer App

Manual Software Installation

With the App Installer present on the machine, it is possible to double

click both MSIX and AppX applications as well as application bundles

and get them to install (similar to an offline installation). There also is

the .AppInstaller file that helps define more complicated application

installations while providing a framework for light management of

application updates.

The App Installer App uses a small GUI that aids the user performing

the installation:

● To verify whether the package is validly signed with an

acceptable certificate.

● Distinguish new installation, upgrade, and downgrade scenarios.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 133

● Understand dependencies, including modification package

installation situations.

App Installer App from Web Sites

The App Installer also allows users to initiate an installation from web

accessible URLs that point to either an MSIX/AppX application,

application bundles or an .appinstaller file. To successfully host MSIX

packages from the web, the following needs to be in place.

Web Server Configuration

● Support for HTTP/1.1: The web server needs to support byte range

requests from the client to fulfill the communication requirements

from App Installer.

● Required MIME Types: New MIME types are needed to support MSIX

File Extension MIME Type

.appx application/appx

.msix application/msix

.appxbundle application/appxbundle

.msixbundle application/msixbundle

.appinstaller application/appinstaller

Required MIME types to host MSIX packages for web consumption

The MIME types in the table above are needed to configure the web

server’s response to the incoming request. For example, if you use IIS

as a web server to host your MSIX packages, the following settings

would be added to the web.config file.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 134

<system.webServer>

<!--This is to allow the web server to serve

resources with the appropriate file extension-->

<staticContent>

<mimeMap fileExtension=".appx"

mimeType="application/appx" />

<mimeMap fileExtension=".msix"

mimeType="application/msix" />

<mimeMap fileExtension=".appxbundle"

mimeType="application/appxbundle" />

<mimeMap fileExtension=".msixbundle"

mimeType="application/msixbundle" />

<mimeMap fileExtension=".appinstaller"

mimeType="application/appinstaller" />

</staticContent>

</system.webServer>

The process is similar for other web hosting platforms.

Create a Clickable Link on a Web Page

If you are using a web page to provide an easy way to distribute the

application installation or to share a common link through Emails, the

current best-practice is to prefix the URL path to the MSIX package with

the App Installer handler.

The App Installer handler is “ms-appinstaller:?source=”. Below is an

example of the final string.

ms-appinstaller:?source=

https://msixdemo1.azurewebsites.net/MySample.msixbundle

When you edit the web page that references the MSIX application, add

the App Installer handler (ms-appinstaller:) to the relevant HTML

link using the source parameter (?source=). You can see an example

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 135

below where the App Installer handler is added to the href property of

an anchor element (<a>), so it contains the full reference.

<html>

 <head>

<meta charset="utf-8" />

<title>Install My App</title>

 </head>

<body>

<a href="ms-appinstaller:?

source=https://msixdemo1.azurew

ebsites.net/MySample.msixbundle">

Install My App

</body>

</html>

Uninstall an MSIX Package using App Installer App

The process to remove an MSIX package is straightforward. Simply

locate it in the Start Menu and right click, then select Uninstall.

Uninstall MSIX package from a device

You will be prompted to uninstall the software. Confirm the uninstall

action by clicking Uninstall in the prompt.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 136

Confirmation of the Uninstall of an MSIX package prompt

While quite simple for the end-user, the admin should be aware of the
following:

● Like installation, in most cases an uninstall may be performed
without elevation.

● By default, this method of installation removes not only the
installed package, but also removes any user settings stored in
the container and/or application registry hive.

● Removal of a package also automatically removes any
Modification package to the package. If you wish to remove the
modification package only, this is accomplished via the
Windows Settings application by locating the application,
exposing the advanced details to see the modification packages
and uninstalling from there (or via PowerShell).

Installing MSIX with PowerShell
Before we dive into using PowerShell to manage MSIX installations,

here's a list of the primary PowerShell cmdlets used for managing

packages:

PowerShell
cmdlet

Description

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 137

Add-
AppXPackage

Used to install a signed *.msix or *.appx
application along with related and dependent
packages.

Get-
AppXPackage

This cmdlet is used to provide a list of *.msix and
*.appx applications on the device.

Remove-
AppXPackage

Used to remove a signed *.msix or *.appx
application from the device.

Get-
AppXPackageMa
nifest

Can be used to read the manifest of an installed
application as an XML object.

PowerShell cmdlets for managing MSIX applications

Note: Each of these commandlets support appx and msix styled

packages and are aliased, such that Add-AppPackage (without the X)

is the same as Add-AppXPackage. We will show the name using the

X in this book to highlight that we are talking about MSIX.

With these four cmdlets, you can handle most of your MSIX

management needs. Make sure to familiarize yourself with the above

cmdlets as they are frequently used.

The Add-AppXPackage Cmdlet

The Add-AppXPackage cmdlet has several use cases.

Installing a simple package

The most common use case of Add-AppPackage is to install a simple

package. As a general best practice, file paths should be enclosed in

double quotes to account for spaces in the path and allow for the use of

variables in the file path (if needed).

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 138

Add-AppXPackage

-Path “C:\Packages\MyPackage\MyPackage.msix”

Handling package dependency packages

Packages may include a listing of dependency packages in their

manifests. These dependencies, which are generally packages with

commonly used components like runtimes and frameworks, must be

available for the package to be installed. Dependencies of a package

may be installed first, prior to this package, or may be installed at the

same time using the DependencyPath parameter.

Add-AppXPackage

-Path

“C:\Packages\MyPackage\MyPackage.msix”

-DependencyPath

“C:\Packages\MyPackage\MyPackageDependency.msix”

Handling External (Modification or Optional) packages

Modification Packages are examples of how the ExternalPackage

option may be used. While the modification package may be installed

using the first Add-AppXpackage after the primary package is installed,

it may also be installed with the primary package this way. It is

important to note that ExternalPackages is an atomic operation which

means that if the additional packages fail to install, the whole

installation operation is aborted.

The ExternalPackages parameter specifies an array of one or more

strings that contain file paths.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 139

Add-AppXPackage

-Path

"C:\Packages\MyPackage\MyPackage.msixbundle"

-ExternalPackages

"C:\Packages\MyPackage\OptionalPackage.msix",

"C:\Packages\MyPackage\OptionalPackageBundle

.msixbundle"

Handing RequiredContentGroups

One feature that a software developer can use to improve installation

performance of a large package is to install only the required

components and trigger the rest of the components to install later.

Microsoft refers to this as application streaming, although it is

unrelated to the App-V style of streaming that MSIX does not

implement. An example of this may be a game where additional levels

are not needed until the user finishes early levels, but optional features

that can be triggered by a user-interface component could also be

implemented by the developer this way. When such a package is built,

the installation can use the RequiredContentGroupOnly parameter,

which installs only the required components of the application, leaving

the optional components registered in a way that the application can

later trigger the download of optional content.

Add-AppXPackage -Path

 "C:\Packages\MyPackage\MyPackage.msixbundle"

-RequiredContentGroupOnly

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 140

The Get-AppXPackage Cmdlet

The Get-AppXPackage cmdlet allows you to view which applications are

installed on a device and is the primary method to identify which

applications are installed on a device so that you can manage them

using the other PowerShell cmdlets.

Getting the user’s package list

It is common to start with the following command to generate a list that

covers applications installed for the logged in user.

Get-AppXPackage

The resulting list will include all kinds of applications, including those

that are part of the system, store apps, and developer signed ones. The

output will be a list of packages, one of which is shown here:

Name : windows.immersivecontrolpanel

Publisher : CN=Microsoft Corporation,

O=Microsoft Corporation,

L=Redmond, S=Washington, C=US

Architecture : Neutral

ResourceId : neutral

Version : 10.0.2.1000

PackageFullName : windows.immersivecontrolpanel

_10.0.2.1000_neutral_neutral_cw5n1h2txyewy

InstallLocation : C:\Windows\ImmersiveControlPanel

IsFramework : False

PackageFamilyName : windows.immersivecontrolpanel

_cw5n1h2txyewy

PublisherId : cw5n1h2txyewy

IsResourcePackage : False

IsBundle : False

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 141

IsDevelopmentMode : False

NonRemovable : True

IsPartiallyStaged : False

SignatureKind : System

Status : Ok

Sample output generated for an application by Get-AppXPackage

Eliminating System and Store Apps

While the cmdlet directly supports certain types of filters, we can also

pipe the output to an external filter to be more creative. For example,

the following line would filter only those packages signed by a

developer:

Get-AppXPackage | % {if($_.SignatureKind -eq

“developer”){$_.name}}

This produces a list of just the names, but changing “$_.name” to “$_”

would show the entire object.

PascalBerger.MSIXCommander

MSIXHero

NotepadPlusPlus-O2004-M2020.824-P430-F

UltraEdit-Class102-O2004

Avogadro-O2004-M2020.824-P430-P

AppPersonalization-Class102

TMurgent-LotsOfFonts-M2020.1006-P4433

23572TimMangan.TMurgent-PsfTooling

Sample output of a filtered list shown package names only

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 142

Getting all applications

If you want to see all applications, for each user account registered on a

device, so that you can perform a cursor assessment of the

applications that are installed on a device, the following cmdlet

parameter is available.

Get-AppXPackage -AllUsers

Note: To use the -AllUsers parameter, the PowerShell process must

have been elevated using RunAsAdmin. This is true for any AppX

PowerShell command that affects more than the current user.

When you run that command, the console output will list all the

applications on the machine, including all the specified parameters. The

output for a single application is presented in the figure below.

Name :

Microsoft.MicrosoftEdge.Stable

Publisher : CN=Microsoft Corporation,

O=Microsoft Corporation,

L=Redmond, S=Washington, C=US

Architecture : Neutral

ResourceId :

Version : 85.0.564.63

PackageFullName : Microsoft.MicrosoftEdge.

Stable_85.0.564.63_neutral__8wekyb3d8bbwe

InstallLocation : C:\Program

Files\WindowsApps\

Microsoft.MicrosoftEdge.

Stable_85.0.564.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 143

 63_neutral__8wekyb3d8bbwe

IsFramework : False

PackageFamilyName : Microsoft.MicrosoftEdge.

Stable_8wekyb3d8bbwe

PublisherId : 8wekyb3d8bbwe

PackageUserInformation : {S-1-5-21-250224505-1589582600-

2170371117-1001 [kkaminsk]: Installed}

IsResourcePackage : False

IsBundle : False

IsDevelopmentMode : False

NonRemovable : False

IsPartiallyStaged : False

SignatureKind : Developer

Status : Ok

Sample output generated for an application by Get-AppXPackage -AllUsers

Additional Filtering Options

Once the big picture is assessed, the next step is to begin filtering the

application data returned by Get-AppXPackage. You can filter for

"application name" by including the Name parameter with a wildcard

character.

In the next example, you can see how to use the Get-AppPackage

command to filter the results for applications named beginning with

“Microsoft.”.

Get-AppXPackage -Name Microsoft.*

You can add in multiple filters to the Get-AppPackage cmdlet. So, for

example, most of the time we want to know which applications are

assigned to a particular user on a device. Add the User parameter to the

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 144

previous example along with a user account and Get-AppPackage will

return a list of applications published to that user.

Get-AppXPackage -Name Microsoft.ScreenSketch -User
 LocalUser

In some instances, you may need to specify the domain that the user is

a part of when a device is joined to Active Directory. However, the

domain name is optional when using this parameter.

Get-AppXPackage -Name Microsoft.ScreenSketch -User

 Contoso\DomainUser

The Remove-AppXPackage Cmdlet

Once you understand how to use Get-AppXPackage and Add-

AppXPackage, removing a package is straightforward. The Remove-

AppXPackage cmdlet is the equivalent to the uninstall feature of the

start menu seen in the previous section.

The first step to removing a package with the cmdlet is finding the

PackageFullName assigned to the package, which is a composite of

other parameters.

You can look up the FullPackageName property for an application using

the Get-AppPackage cmdlet (see the above figure: The console output

generated for an application by Get-AppXPackage).

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 145

The important thing to remember is that the Remove-AppXPackage

cmdlet expects the PackageFullName to be passed to the -Package

parameter.

Remove-AppXPackage -Package

Microsoft.ScreenSketch_10.2008.22.0_x64__8wekyb3d8bbwe

Using Get-AppPackageManifest

The application manifest contains a great deal of metadata about the

package. For example, there are times that you need to assess and

understand what capabilities the application has registered with the

operating system. To search the application manifest for assigned

capabilities, try the following:

(Get-AppXPackage -Name "*ZuneMusic*" | Get-

AppXPackageManifest).Package.Capabilities)

The Get-AppXPackageManifest cmdlet generates an array of strings
with that application’s capabilities.

Capability

{internetClient, privateNetworkClientServer,

musicLibrary, removableStorage...}

With a more complicated analysis, it is possible to review other

elements that have an effect on user experience such as which

applications have startup tasks. For example, if you need to know what

applications have registered startup tasks the following bit of

PowerShell will collect that information.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 146

List all the app startups

$startuptasks =

 get-appxpackage -pv app | get-appxpackagemanifest |

%

{

if ($_.package.Applications.Application.

Extensions.extension.startuptask.taskid)

{

[pscustomobject] @

{ PackageFamilyName = $app.PackageFamilyName

TaskID = $_.package.Applications.Application.

Extensions.extension.startuptask.taskid

}

}

 }

$startuptasks

The output should list off the PackageFamilyName and the tasks that

are registered.

PackageFamilyName TaskID

----------------- ------

Microsoft.SkypeApp_kzf8qxf38zg5c SkypeStartup

Microsoft.549981C3F5F10_8wekyb3d8bbwe CortanaStartupId

SpotifyAB.SpotifyMusic_zpdnekdrzrea0 Spotify

Microsoft.Todos_8wekyb3d8bbwe ToDoStartupId

AppleInc.iTunes_nzyj5cx40ttqa

{AppleMobileDeviceProcess, iTunesHelper}

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 147

Other MSIX/AppX Cmdlets

Additional, less frequently used, PowerShell cmdlets are part of the

AppX module. These include cmdlets for provisioned packages (also

available using the DISM command described in the next section), and

those for Volumes (the location for the MSIX/AppX packages on any

given disk partition):

● Add-AppXProvisionedPackage

● Get-AppXProvisionedPackage

● Remove-AppXProvisionedPackage

● Set-AppXProvisionedDataFile

● Optimize-AppXProvisionedPackages

● Add-AppXVolume

● Get-AppxVolume

● Mount-AppXVolume

● Unmount-AppXVolume

● Remove-AppXVolume

● Set-AppXDefaultVolume

Deployment with DISM
 When talking about package deployment, Microsoft uses the term

“offline” simply to indicate that the installation activity is disconnected

from the end-user. For those instances where you need to perform an

offline installation, you may deploy MSIX applications with the use of

DISM58, or alternatively you may use the Add-AppxProvisionedPackage

PowerShell cmdlet. Both of these methods inject the packages into

58 https://docs.microsoft.com/en-us/windows-
hardware/manufacture/desktop/mount-and-modify-a-windows-image-using-
dism

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/mount-and-modify-a-windows-image-using-dism

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 148

Windows images when they are mounted offline. The functionality of

these two methods appear to be the same, and where we show

examples in this section using one or the other method you should be

able to use the other.

Pre-provisioning allows for the application package content, and

licensing file if needed, to be added to the Windows image as part of a

preparation phase of imaging prior to sealing off the image for

distribution. Microsoft uses pre-provisioning themselves within the OS

images provided to you for many of the “in-box” UWP and MSIX

application packages, such as Calculator.

When you pre-provision the application package in this way, the app is

not yet fully installed, but all contents needed are present in the image.

Installation will automatically complete when a user logs into the

booted image after image deployment. In a multi-user operating system,

this means that each user logging onto the OS will have their own

installation completed. This portion of the per-user installation consists

of fully integrating the application into the user profile, including

important integrations such as to the Start Menu and file type

associations.

Offline Installation

Application packages acquired from the Microsoft Store include

licensing that must be applied. For offline installation to work, you need

to acquire and add the licencing file when adding the package.

Currently, the Windows Store interface does not support separation of

the license file, however organizations may use their Windows Store for

Business, or Store for Education, to obtain the msix file or bundle and

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 149

license file. When requesting the license file, you should download the

xml version of that file when using the method shown here.

The Add-AppxProvisionedPackage commandlet adds a package to the

image that is installed per user when they log into the device. You can

customize the MSIX package further by including additional packages,

for example, a license file with the use of the LicensePath parameter.

Add-AppxProvisionedPackage

-Path C:\offline

-PackagePath C:\Packages\MyPackage\MyPackage.msix

-LicensePath C:\Packages\MyPackage\MyLicense.xml

Each application will have unique dependencies that will need to be

included in the offline package, some will be required, and some will be

optional. In most use cases (where there is an Internet connection),

dependencies are simply downloaded when needed, but in the case of

offline installations, required dependencies must be specified so that

they are present to complete the application install.

Dependent packages are specified using the DependencyPackagePath

parameter.

Add-AppxProvisionedPackage

-Path c:\offline

-PackagePath C:\Packages\MyPackage\MyPackage.msix

-DependencyPackagePath

C:\Packages\MyPackage\MyDependencyPackage.msix

-LicensePath C:\Packages\MyPackage\myLicense.xml

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 150

Online Installation

Another scenario is to use DISM to install applications into online

operating systems. This could be part of an MDT task sequence or

some other customization script that runs after the operating system is

installed.

In the following example, an application, its dependencies, and a license

file are all contained in the folder “C:\MyPackage”. In order for DISM to

load all the required components from the same folder, use the

FolderPath parameter.

Add-AppxProvisionedPackage -Online -FolderPath

 "C:\MyPackage"

Provisioning Packages
Provisioning packages are used to transform the default configuration

of an off-the-shelf Windows device into the configuration an

organization needs to provision the device to a user.

The provisioning package is built using the Windows Image

Configuration Designer found in the Windows Automated Deployment

Kit (ADK). Using this tool administrators can build a provisioning

package file that can be hosted on SharePoint, websites, email or USB

keys.

The provisioning package is typically for environments that require the

quick provisioning of hardware that may not be owned by the

organization. It is possible to use provisioning packages to install

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 151

applications, however, the application installation requirements will

determine if it is a possible option in your specific scenario.

The Provisioning Package can contain a copy of the application

package and it’s dependencies for installation onto the device when it is

applied. Installation can be triggered by adding a USB key to the device

as part of Windows setup, in the Windows Settings app or double

clicking the provisioning package file.

When you install an application with a provisioning package, you need

two pieces of information. First, you need the path to the *.msix or

*.msixbundle file that you want to install. Second, you need to know the

package family name (PackageFamilyName) to complete the process.

You can use the Get-AppPackage cmdlet (in PowerShell) to look up this

value by installing the application on a test machine and then running

the cmdlet.

Name :

Microsoft.MicrosoftEdge.Stable

Publisher : CN=Microsoft

Corporation, O=Microsoft Corporation, L=Redmond,

S=Washington, C=US

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 152

Architecture : Neutral

ResourceId :

Version : 85.0.564.63

PackageFullName :

Microsoft.MicrosoftEdge.Stable_85.0.564.63_neutral__8wek

yb3d8bbwe

InstallLocation : C:\Program

Files\WindowsApps\Microsoft.MicrosoftEdge.Stable_85.0.56

4.63_neutral__8wekyb3d8bbwe

IsFramework : False

PackageFamilyName :

Microsoft.MicrosoftEdge.Stable_8wekyb3d8bbwe

PublisherId : 8wekyb3d8bbwe

IsResourcePackage : False

IsBundle : False

IsDevelopmentMode : False

NonRemovable : False

IsPartiallyStaged : False

SignatureKind : Developer

Status : Ok

Console output of Get-AppPackage and PackageFamilyName identified

The license file and dependency packages must be specified if required,

otherwise, those values are optional. In the following picture, you can

see the Add an Application screen, with the required data for the

application.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 153

Add an application to a provisioning package

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 154

MSIX and the Windows Store
It’s important to understand that Windows Store is more than just a

consumer app store, it is a focal point for purchasing hardware and

software for your organization.

The Windows Store is a cloud-based application store where

organizations can curate a list of approved software that users can

install themselves. Windows Store for Business and Windows Store for

Education are the primary portals for organizations to access the

Windows Store as their own private store. Unfortunately, you cannot

push MSIX packages to devices using this technology because the

Windows Store is a self-service oriented experience and users must

trigger the application installations.

Instead, you need to assign applications using Azure AD security groups

to publish them. The user simply has to "go to the store", "search for the

application" to "install it".

With administrators, the process can be more complicated, not all

enterprise software distribution scenarios require an integration with

Windows Store. If the application has been published to the public

store, then the process of adding the application to your organization is

straightforward and done through the Windows Store for Business

portal.

On the other hand, for repackaged MSIX applications and software not

published through the public store, you can use a private Windows

store. Under this approach, publishers are given access to the private

Windows store as an LOB publisher for the organization. The publisher

then submits applications and application updates using this

mechanism.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 155

All application changes are approved before the application is

published, and the time it takes to synchronize private Windows Store

applications is up to 5 days.

When LOB Publishers are used, and you're ready to send your custom

applications to the private store, you need to keep some considerations

in mind when estimating the timeline to get an application ready for

deployment.

This process has prerequisites and several steps that require time until

the next step can be performed.

● First, you need to determine the onboarding procedure that the

publisher must go through to distribute applications with

Microsoft. All LOB publishers must have a developer account

with Microsoft before they can deploy applications to private

Windows Stores.

● Next, you need to be aware of various events to take into

account each time an application is published (see figure

below).

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 156

Onboarding diagram for LOB published applications

● Now, to put it into context, let’s assume that the supplier of the

MSIX package is set up as an LOB publisher - the process

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 157

needed to push applications to the private Windows Store will

still take a significant amount of time to complete.

For example, when an application is submitted to a private Windows

Store, the application can take 48-72 hours to appear in the customer’s

application inventory. Only after an application is available in the

application inventory,the application is added to the private Windows

Store by an administrator of the customer’s Windows Store for

Business tenant.

It can take another 36 hours for the application to become available to

all users once it is available in the private Windows Store.

There are some points to consider in regard to deploying applications

through a private Windows Store are:

1. To understand that it is an involved and time-consuming

process to onboard a developer who is not already a certified

Microsoft developer.

2. To be aware of the considerable delay when following the steps

to publish an application and its updates to a private Windows

Store and have it available to end users.

3. To know that deciding to use a private Windows Store should

not be taken lightly. It may not be the best path for some of your

in-house application packages because of the delays in

publishing.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 158

Note. In this last case, you might consider using an alternative to a

private Windows Store, you can try researching a device management

solution such as Microsoft Endpoint Manager, which can deploy MSIX

packages with or without the store.

MSIX and the App Installer File

The MSIX package contains the AppXManifest file, which is an XML

structured text file that contains information about the package as set

by the developer/creator of the package.

An App Installer File is an additional external XML file that contains all

the installation settings needed to deploy and manage the

application(s) in the package. It typically contains dozens of critical

management settings, such as enabling update management -- which

makes the App Installer file scope to reach beyond application

deployment.

The scope of the App Installer File becomes an important piece you

need to account for when you begin designing your MSIX package and

deployment workflow in some environments. In some cases, software

vendors may choose to build website deployments using the MSIX

packages and App Installer files. But you may also find this a useful

technique to manage updates from within your organization. Deciding

to use the App Installer File to help manage updates is a major decision

that will impact your overall application management practices.

Before diving into the key components of the App Installer file, we need

to mention one technical requirement for the App Installer file to

function correctly on end user devices. Currently (end of 2020), the

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 159

device must have Windows 10 170959 (or newer) installed and have the

necessary APIs60 for reading and modifying App Installer packages.

Once that requirement is out of the way, the first step in working with

App Installer files is to choose a code editor that supports XML markup,

autocompletion, and autoformatting. A proper code editor will help

eliminate hard to catch syntax errors and efficiently focus on the core

elements and their attribute values.

Note. We use Visual Studio Code, but there are lots of great

alternatives available, so just use one you are comfortable working

with.

Here's an App Installer sample file you can download for easy

reference61. Alternatively, you can copy sample content from

Microsoft’s documentation62 or start from scratch by creating a new

XML file in your code editor with the “.appinstaller” file extension.

It is strongly recommended that you familiarize yourself with the official

App Installer XML schema63and regularly review the core elements and

59https://docs.microsoft.com/en-us/windows/msix/app-installer/app-installer-
file-overview
60 https://docs.microsoft.com/en-us/windows/msix/app-installer/app-
installer-documentation
61 https://portalfuse.io/community/msixbook/appinstaller.html
62 https://docs.microsoft.com/en-us/windows/msix/app-installer/how-to-
create-appinstaller-file#app-installer-file-example
63 https://docs.microsoft.com/en-
us/uwp/schemas/appinstallerschema/schema-root

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/windows/msix/supported-platforms
https://portalfuse.io/community/msixbook/appinstaller.html
https://docs.microsoft.com/en-us/uwp/schemas/appinstallerschema/schema-root

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 160

their attribute definitions because Microsoft changes which core

elements are required as well as attribute data types from time to time.

When you create an App Installer file, make sure the standard XML

schema declaration is present and you’re good to go.

The first core element you need to include in the App Installer file is the

MainPackage element declaration and the schema required attributes

listed below.

<MainPackage

Name="Contoso.MainApp"

Publisher="CN=Contoso"

Version="1.0.0.0"

ProcessorArchitecture="x64"

Uri="http://mywebservice.azurewebsites.net

/mainapp.msix" />

The URI attribute contains a web accessible link where the application

files are stored. If this value is different from the current location of the

App Installer file, Windows will attempt to retrieve the latest copy of the

application from the URI location.

The URI accepts connections through HTTP, HTTPS, or file schemes.

HTTP is generally discouraged on public networks and should be

avoided (if possible). Instead, use HTTPS to ensure the trust of your

hosting site.

In the next example, the URI attribute contains a file share path.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
http://mywebservice.azurewebsites.net/

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 161

 <MainPackage

Name="Contoso.MainApp"

Publisher="CN=Contoso"

Version="1.0.0.0"

ProcessorArchitecture="x64"

Uri="file://server/share/mainapp.msix" />

For new applications, it is a good practice that you use the xmlns and

Version attributes listed in the below table. The Version attribute

specifies the current application version, so make sure you verify the

version value before you deploy.

Attributes Constraints Requir
ed

xmlns Must be static
(http://schemas.microsoft.com/appx/appi
nstaller/2017/2)

Yes

Name A string between 3 and 50 characters with
alpha-numeric, period, and dash characters
allowed.

Yes

Publisher A string between 1 and 8192 characters
that fits the regular expression of a
distinguished name. The string must be
compliant with CertNameToStr Windows
API implementation of X.500 rules.

Yes

Version Quad notation (Major.Minor.Build.Revision) Yes

ProcessorArchitectur
e

x86 | x64 | arm | neutral Yes

Uri Web Uri to main package Yes

HoursBetweenUpdat
eChecks

0-255 No

ShowPrompt true/false No

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 162

UpdateBlocksActivati
on

true/false No

HoursBetweenUpdat
eChecks

numeric No

ForceUpdateFromAn
yVersion

true/false No

App Installer file schema attribute details

In situations where you need to distribute an MSIX file, the App Installer

file needs to contain a MainBundle element declaration with the details

of the MSIX application to install.

The Name and Publisher attributes are both required, and the publisher

value must be a valid X500 distinguished name.

If you are using an *.msixbundle or an *.appxbundle, then you must

include the MainBundle element to define the settings. The URI for the

MainBundle would point to an *.msixbundle or an *.appxbundle for

installation.

<MainBundle

Name="Contoso.MainApp"

Publisher="CN=Contoso"

Version="1.0.0.0"

ProcessorArchitecture="x64"

Uri="http://mywebservice.azurewebsites.net

/mainapp.msixbundle" />

For deployment scenarios that require more granular control over

application deployment, or have additional dependencies to consider,

use the OptionalPackages element or, in some instances, the

ModificationPackages which will be discussed later.

With OptionalPackages, you can select which portion(s) of an

application to install. It's a good idea to experiment with this technique

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
http://mywebservice.azurewebsites.net/

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 163

to improve performance for your end users, especially with large

applications.

When building your App Installer file, use the OptionalPackages element

to describe the dependent application details.

In the following example, the application details are contained in a

Package element because these examples are designed for a single

MSIX file deployment. For those use cases where you need to deploy

multiple MSIX files, use the Bundle element instead.

The attributes of the Package element have the same constraints as the

MainBundle element. The URI points to an MSIX file. The example

shows an MSIX package as an optional package.

 <OptionalPackages>

 <Package

 Name="Contoso.OptionalApp1"

 Publisher="CN=Contoso"

 Version="2.23.12.43"

Uri="https://mywebservice.azurewebsites.net

 /OptionalApp1.msix" />

 </OptionalPackages>

The next example uses only an *.msixbundle package as a dependency.

As a result, the Bundle element is required instead of the Package

element.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://mywebservice.azurewebsites.net/

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 164

<OptionalPackages>

<Bundle

Name="Contoso.OptionalApp2"

Publisher="CN=Contoso"

Version="1.32.13.63"

Uri="http://mywebservice.azurewebsites.net

/OptionalApp1.msixbundle" />

</OptionalPackages>

For larger organizations, it is strongly recommended to get to know the

ModificationPackages element because it is where you define unique

application customizations for the MSIX container that get applied to

the application as it is installed.

The ModificationPackages element helps decouple customizations to

the MSIX package into a separate package, while still giving admins the

ability to fine-tune the application experience for the end user.

In the next example, the URI attribute contains a link to a modification

package where the modification files are located.

 <ModificationPackages>

<Package

Name="Contoso.Customization"

Publisher="CN=Contoso"

Version="1.0.0.0"

Uri="https://mywebservice.azurewebsites.net

/ContosoCustomization.msix" />

 </ModificationPackages>

Dependencies, such as Visual C++ runtimes, are defined in the

Dependencies element. The next example shows how to use the

Dependencies element.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
http://mywebservice.azurewebsites.net/
https://mywebservice.azurewebsites.net/

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 165

 <Dependencies>

 <Package

 Name="Microsoft.VCLibs.140.00"

 Publisher="CN=Microsoft Corporation,

 O=Microsoft Corporation,

 L=Redmond, S=Washington, C=US"

 Version="14.0.24605.0"

 ProcessorArchitecture="x64"

 Uri="http://mywebservice.azurewebsites.net

 /fwkx64.appx" />

 </Dependencies>

The UpdateSettings element defines important parameters that control

how updates are managed.

You can control whether updates happen independently from the

application launch or only when the user launches the application. You

can also choose whether the user is prompted or if the update is silent

and happens in the background.

For example, including the AutomaticBackgroundTask element

instructs the application to check for updates in the background.

 <UpdateSettings>

 <AutomaticBackgroundTask/>

 </UpdateSettings>

Note. The AutomaticBackgroundTask element and many other

update settings are optional.

In the next example, find two useful update settings. First, the

OnLaunch element, which forces the application to check for updates

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
http://mywebservice.azurewebsites.net/

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 166

each time it is launched by setting the HoursBetweenUpdateChecks

attribute to zero.

Next, we need to make sure that the user receives a prompt about the

update by setting the ShowPrompt attribute to “true”.

Finally, a typical approach would be to force the user to update the

application before it launches by setting the UpdateBlocksActivation

attribute to “true”.

Then, you need to include the ForceUpdateFromAnyVersion element to

ensure that I can rollback an app’s version in case there’s an issue.

Without this setting configured, you can only increase the app’s version.

 <UpdateSettings>

 <OnLaunch HoursBetweenUpdateChecks="0"

 ShowPrompt="true"

 UpdateBlocksActivation="true" />

 <AutomaticBackgroundTask/>

 <ForceUpdateFromAnyVersion>true

 </ForceUpdateFromAnyVersion>

 </UpdateSettings>

It’s important to have your app team make these decisions ahead of

time and document the installation update settings.

The last thing to do with your App Installer file is to make sure you close

the AppInstaller element in the file.

</AppInstaller>

And there you have it, make sure to review the complete demo file64 as

a reference, then try making your own App Installer file from scratch.

64 https://portalfuse.io/community/msixbook/appinstaller.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://portalfuse.io/community/msixbook/appinstaller.html

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 167

Configuration Manager and MSIX

Deployment
Configuration Manager has a long and distinguished history of

managing Windows devices with application management as one of its

many capabilities.

For sure, many of you are aware that managing applications on

Windows 10 devices comes in different forms. Configuration Manager

on its own provides multiple ways to install MSIX applications on a

device, and it is important to point out that there are also cloud-based

MSIX application management options that you can explore.

When Configuration Manager is in a hybrid-cloud configuration, known

as co-management, it is possible to have Intune handle MSIX

applications on the same device.

This section focuses exclusively on distributing MSIX packages with

Configuration Manager and its underlying infrastructure. There are two

main paths you can follow to publish an MSIX package through

Configuration Manager.

However, whichever path you choose depends on how the application

source is acquired. This is because with MSIX, if the application is in the

Windows Store, then it makes sense to use that solution with

Configuration Manager. Otherwise you might have a bunch of

application source files that need to be loaded directly into the

Configuration Manager.

With that caveat out of the way, the first way to distribute an MSIX

package assumes that you have an offline copy of the application that

can be loaded into the Configuration Manager for distribution.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 168

While using Windows Store is the preferred method for handling the

distribution of modern applications, there are times (e.g., distributing

internally repackaged software) when the store model isn’t suitable

because it is more rigid and that can add significant delays to the

publishing process.

Having the MSIX package file offers more control over the delivery of

MSIX applications, but considering the following.

Paid apps from the store are not supported for offline installation via

Configuration Manager. For repackaged software this is likely not an

issue but for purchased software you may need to integrate

Configuration Manager with your Windows Store for Business.

Capability Offline

apps

Onlin

e apps

Synchronize app data to Configuration

Manager

Yes Yes

Create Configuration Manager

applications from store apps

Yes Yes

Support for free apps from the store Yes Yes

Support for paid apps from the store No Yes*

Support required deployments to user or

device collections

Yes Yes

Support available deployments to user or

device collections

Yes Yes

Support line-of-business apps from the

store

Yes Yes

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 169

Provision a store app for all users on a

device Note 265

Yes** Yes**

* Support begins with Windows 10 1703
** Requires a minimum of Configuration Manager 1806

Comparison between online and offline support for MSIX capabilities in
Configuration Manager

In situations where I need to distribute repackaged software within the

organization, you could use the offline installation approach when

loading the package directly into the Configuration Manager as an

application object with source files.

With this approach, youI can take advantage of Configuration Manager’s

distribution point servers and trigger the distribution of the package

across the network.

First, go to the Software Library workspace in the Configuration

Manager console. Next, expand Application Management, and right

click Applications. Finally, select Create Application.

Create an application from the Software Library workspace

65 https://docs.microsoft.com/en-us/mem/configmgr/apps/deploy-
use/manage-apps-from-the-windows-store-for-business#bkmk_note2

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 170

On the General page, change the Type field to “Windows app package”

and locate the MSIX package you want to install by clicking the

“Browse…” button.

Configure the application Type and MSIX package Location fields

The process is simple for standalone applications. But, for applications

that have dependencies, it is more complicated because you need to

individually add application dependencies to the Configuration Manager

and then link them to the main application object.

Another important thing you need to consider is whether the application

is installed for a specific user or for all users.

Note: Be sure to look for the “Provision this application for all users

on the device” checkbox further on in the creation process.

Traditionally, Configuration Manager uses the application deployment

targeting to demine if the application should be installed for all users of

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 171

a machine or only for a specific user. With MSIX this behavior is

controlled by the checkbox.

Many organizations are interested in knowing if they can distribute

packages to machines outside of the corporate network. The quick

answer is yes -- if they are managed using the Cloud Management

Gateway or Intune. The Cloud Management Gateway is where

Configuration Manager uses Azure Services to manage clients that are

not connected to the corporate network.

Intune can complement Configuration Manager for deploying

applications in a Co-Management configuration, which is going to be

covered in the next chapter.

The second way to install an MSIX package with Configuration Manager

is to link directly to an application in the public Windows Store. From

there, you can download an application with all its dependencies

straight into your device using the Windows Store. But this delivery

method offers very light management of the application installation.

The application is then delivered to devices by leveraging the Windows

Store client on the device and the Windows Store cloud service to

distribute the applications to devices.

Here's how to achieve that:

● In the Configuration Manager console, create a new application

object.

● Then, from the General page, select “Windows app package (in

the Windows Store)” in the Type field.

● Next, select the “Browse…” button and log in with a Microsoft

account (not your work account) and search for the application

.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 172

 Install an application from the public Windows Store

Once you’ve selected the application and returned from the Windows

Store, the Location field will have a link to the application.

The Application Location field contains link to Windows Store

In the third case, you can use the private Microsoft Store for Business to

distribute an MSIX package. In this scenario the Windows Store for

Business is used to acquire and load applications for deployment with

Configuration Manager. There are a number requirements that you must

adhere to in order to successfully deploy through a private Microsoft

Store for Business.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 173

First, Microsoft Store for Business must be added as an Azure Service

to Configuration Manager. Second, the synchronization must be active

and error free before you can begin. In the image below, Microsoft Store

for Business has been configured as an Azure Service66.

Configure private Windows Store for Business as an Azure Service

Applications will be brought across into the Configuration Manager

Console upon successful synchronization with the store.

Note. When you initially synchronize an application through Microsoft

Store for Business, it is classified as a License. Therefore, you look for

them in Application Management > License Information for Store

Apps.

To finish the process, you need to create an application from the

license.

● First, right click a license and select Create Application.

66 https://docs.microsoft.com/en-us/mem/configmgr/apps/deploy-
use/manage-apps-from-the-windows-store-for-business#bkmk_setup

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 174

Create an application from an available license in

License Information for Store Apps

● The create application wizard will walk you through the steps of

creating the application, which is mostly inputting metadata

about the application.

Now that you have completely synchronized an application from

Windows Store to a private Microsoft Store for Business, expect

Configuration Manager to synchronize every 30 minutes.

While this interval is sufficient for most situations, there may be

occasions where you need to manually initiate a synchronization for

troubleshooting or prototyping purposes. When you need to manually

synchronize an application, use the following workflow:

1. Open the Configuration Manager console.

2. Go to the Administration workspace.

3. Expand Azure Services.

4. Right click the Microsoft Store for Business node you already

configured.

5. Select Synchronize with the store.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 175

Note. Configuration Manager limits manual synchronization to once

every ten minutes. If you attempt another synchronization before the

10 minutes have passed, the request will be denied.

Once you have configured applications in Microsoft Store for Business,

you are going to need to troubleshoot the synchronization between

Windows Store and your Microsoft Store for Business regularly.

The first step is to locate the synchronization status for your Microsoft

Store for Business in the Configuration Manager console.

Under Administration > Azure Services, select your Microsoft Store for

Business service. The details section will then display the properties of

that service, one of which is “Last Sync Status”. Below, we can see a

“Failed” synchronization status.

Identify a failed application synchronization in Microsoft Store for Business

If there is a synchronization problem, start your investigation by

evaluating the following logs on the site server. You can use the order

presented below:

1. WSfbSyncWorker.log

2. SMS_CLOUDCONNECTION.log

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 176

It is important to point out that in this scenario with the Windows Store

the content for the applications is downloaded to the site server then

replicated to distribution points for installation by client devices. The

other method that uses MSIX packages with distribution points is when

you supply the MSIX file directly to a Configuration Manager application

object.

As mentioned at the onset, when the Configuration Manager is in a co-

management configuration, applications can be delivered using Intune.

In this configuration, the client device can leverage the application

management investment that was made with Configuration Manager

while having the option of performing application management

functions from Intune.

So, let’s proceed to the next chapter where we can explore MSIX

packages delivered via Intune.

Using Intune with MSIX
Before diving straight into Intune, let's illustrate the broad support MSIX

receives across a wide range of enterprise use cases which includes

more purpose-built devices such as the Surface Hub and Hololens.

App type

LOB:

APPX/MSIX MSFB Offline MSFB Online Store Link

Home Yes Yes Yes Yes

Pro Yes Yes Yes Yes

Business Yes Yes Yes Yes

Enterprise Yes Yes Yes Yes

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 177

Education Yes Yes Yes Yes

S-Mode Yes Yes Yes Yes

HoloLens1 Yes Yes RS4+ Yes

Surface Hub Yes Yes No Yes

WCOS Yes Yes Yes Yes

Mobile Yes Yes Yes Yes

Modern application formats and Intune capabilities

The good news is that Intune provides similar options to distribute MSIX

applications as Configuration Manager. In this section, I will cover three

key scenarios for installing MSIX applications with Intune:

● MSIX uploaded to Intune

● MSIX from a public store

● MSIX from a private store

That being said, before you can load an application to Intune, you need

to consider how the limitations of Intune affect the way you deploy the

application. Intune is a cloud-based service with its own unique

limitations that must be understood.

The main limitation is that package file size must be less than 30GB.

This was a recent improvement over the previous limit of 8GB.

For those cases where you need to upload and distribute your own

MSIX package to Intune, you can create a Line-of-business app object in

the Intune console. When the package is loaded, it is scanned for

dependencies which are then listed in the Intune console.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 178

Uploading an MSIX package to Intune automatically detects dependencies

If the reported dependencies are not present in the main package, you

should upload them at the prompt, or the application may not run

correctly when delivered to the user.

For those cases where you need to create an MSIX application from the

public Windows Store, Microsoft has developed a prescribed process67

for adding a public store application to Intune.

The first step is locating the application in the public store68 through a

browser. Once you’ve located the application, copy the URL to the

application from your browser’s URL field and paste it into the Intune

console.

67 https://docs.microsoft.com/en-us/mem/intune/apps/store-apps-windows
68 https://www.microsoft.com/en-ca/store/apps

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 179

Enter the application URL into the Intune Console

This URL must also be entered into the Appstore URL field of the Intune

application object.

Enter the Windows Store application URL into the Appstore URL field

Also enter in the publisher field as well since it is a required field.

You can synchronize Intune and Windows Store with Microsoft Store for

Business, which makes regular publishing less fragile because it

eliminates a lot of data entry errors that occur when creating the

application object from the public store.

Additionally, paid applications can be purchased by bulk through the

synchronization mechanism, a feature which greatly simplifies license

management.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 180

Microsoft has published a workflow69 to integrate Intune and Microsoft

Store for Business and it comes with considerable effort up front to get

it working. The good news is that once the configuration is complete,

applications that exist in Microsoft Store for Business will automatically

replicate to your Intune tenant.

For those situations where you need to manually trigger the

synchronization, you can trigger it in the Intune console, like you can

with the Configuration Manager.

To trigger a synchronization, open the Microsoft Store for Business

blade70 located in the Tenant administration portal and then open the

“Connectors and tokens” page. From there, you can view the status of

the synchronization and the last synchronization timestamp (see the

figure below).

To sync with Microsoft Store for Business, click the Sync button.

69 https://docs.microsoft.com/en-us/mem/intune/apps/windows-store-for-
business
70

https://devicemanagement.microsoft.com/#blade/Microsoft_Intune_DeviceSe
ttings/TenantAdminConnectorsMenu/msfb

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 181

Manually synchronize Intune applications with Microsoft Store for Business

As with Configuration Manager, Intune supports Delivery Optimization in

Windows 10 to allow for peer sharing of application content. To enable

this functionality, a device configuration profile must be created in the

Intune console and targeted at client devices to allow content sharing.

Devices on the same local network can then use each other to speed up

download times while offloading the Internet connection.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 182

VDI Meets MSIX with App Attach
A common use case seen in some customers is to use datacenter

hosted operating systems, either in private data centers or in the cloud.

Often these operating systems are set up generically and applications

are added dynamically based on the logged on user. The

implementation may be either VDI or a shared operating system, but in

either case after signing into the OS the end-user must wait for the apps

to be ready. MSIX App Attach significantly reduces this wait time,

getting the applications into a usable state more rapidly.

App Attach delivers the fastest provisioning experience for MSIX

applications in a stateless VDI environment. Some preliminary

performance numbers on provisioning time between scripted standard

installation of MSIX packages versus pre-release versions of MSIX

AppAttach may be seen at Tim Mangan Blog71.

Keep in mind that the operating system, the packages, plus the user and

application state information stores are managed through different

techniques to allow for the dynamic composition of a virtual machine

when a user logs in, and all parts need to be in place for the user to

become productive.

More specifically, App Attach mounts MSIX applications at logon

without requiring a full application installation, instead, the application

shell integrations are performed to appear installed to the end-user.

When the application is in use, only the required blocks of data are

copied to the virtual machine - bypassing a lengthy installation process

of copying all the application payload to the virtual machine.

Furthermore, the block-level single instance recognition of MSIX avoids

71 https://www.tmurgent.com/TmBlog/?p=3139

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.tmurgent.com/TmBlog/?p=3139?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 183

streaming and storing application blocks that are common to other

packages.

This approach is recommended because it lowers costs by reducing

data storage and improves governance practices by providing a uniform

way to install applications across all virtual machines in a pool.

The MSIX applications are attached as *.vhd or virtual hard disk files

meaning that the application host operating system must have the

Hyper-V feature installed to do this action. Hyper-V can easily be

enabled with the following PowerShell command:

Enable-WindowsOptionalFeature -Online -FeatureName

Microsoft-Hyper-V -All

Importantly, you need to disable four update services that affect

applications. The first is Windows Update, which you can disable with:

sc config wuauserv start=disabled

Second, you need to disable Windows Store updates. To do that, use the

“reg” command:

reg add HKLM\Software\Policies\Microsoft\WindowsStore /v

AutoDownload /t REG_DWORD /d 0 /f

Third, disable the Automatic app update scheduled task with the

following two commands:

Schtasks /Change /Tn

"\Microsoft\Windows\WindowsUpdate\Automatic app update"

/Disable

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 184

Schtasks /Change /Tn

"\Microsoft\Windows\WindowsUpdate\Scheduled Start"

/Disable

And finally, the application host also needs to have Content Delivery

auto download disabled.

reg add

HKCU\Software\Microsoft\Windows\CurrentVersion\ContentDe

liveryManager /v PreInstalledAppsEnabled /t REG_DWORD /d

0 /f

reg add

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\ContentDe

liveryManager\Debug /v ContentDeliveryAllowedOverride /t

REG_DWORD /d 0x2 /f

Once you have completed the above steps, the host operating system is

configured, and you can prepare your applications for App Attach. While

this can be done through a command line72, you can use MSIX Hero73, a

freeware utility. The MSIX Hero team have created a graphical MSIX to

VHD package conversion utility that works great.

Publishing requires the correct certificates to be present on the

application host virtual machines. As such, it is a best practice to place

these certificates in the operating system image so that they are

immediately present when applications mount.

The virtual machines will require SMB file share access to the VHD files

and the computer accounts will require read-only rights. Always try to

72 https://docs.microsoft.com/en-us/azure/virtual-desktop/app-
attach#generate-a-vhd-or-vhdx-package-for-msix
73 https://msixhero.net/

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://docs.microsoft.com/en-us/azure/virtual-desktop/app-attach#generate-a-vhd-or-vhdx-package-for-msix
https://msixhero.net/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 185

run the latest version of the SMB protocol to ensure the best

performance and security.

To tie everything together requires four final PowerShell scripts that

manage the following activities with App Attach.

● A startup script that runs the stage74 script

● A logon script that runs the register75 script

● A logoff script that runs the deregister76 script

● A shutdown script that runs the destage77 script

Microsoft has guidance on customizing78 these files to suit your

configuration. Once these files have been tested, create a GPO and add

the PowerShell files to the various script events and target your virtual

machines with it. Because of the special needs of VDI machines they

rarely share many of the same Group Policy objects that desktops and

laptops would use.

Usually virtual machines predetermined for this role would exist within

their own organizational unit in the Active Directory, where all the

relevant policies for the device are targeted.

74 https://github.com/Azure/RDS-Templates/blob/master/msix-app-
attach/1.stage-a.ps1
75 https://github.com/Azure/RDS-Templates/blob/master/msix-app-attach/2-
a.register.ps1
76 https://github.com/Azure/RDS-Templates/blob/master/msix-app-
attach/3.deregister-a.ps1
77 https://github.com/Azure/RDS-Templates/blob/master/msix-app-
attach/4.destage-a.ps1
78 https://docs.microsoft.com/en-us/azure/virtual-desktop/app-
attach#prepare-powershell-scripts-for-msix-app-attach

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://github.com/Azure/RDS-Templates/blob/master/msix-app-attach/1.stage-a.ps1
https://github.com/Azure/RDS-Templates/blob/master/msix-app-attach/2-a.register.ps1
https://github.com/Azure/RDS-Templates/blob/master/msix-app-attach/3.deregister-a.ps1
https://github.com/Azure/RDS-Templates/blob/master/msix-app-attach/4.destage-a.ps1
https://docs.microsoft.com/en-us/azure/virtual-desktop/app-attach#prepare-powershell-scripts-for-msix-app-attach

MSIX Packaging Fundamentals - Fundamental Deployment Concepts

 Powered by AdvancedInstaller.com 186

MSIX and App Center
The intention of including App Center in this book is to build awareness

for the IT Pro because, especially when developers drive internal

application processes, it may not always be clear what tools should be

used to prototype applications in an enterprise environment.

Sometimes, developers are not necessarily aware of the App Center and

how it can be used to help enhance their experience in building a line of

business applications.

Microsoft’s App Center79 is a solution for rapidly building, deploying, and

testing MSIX and other modern applications. The framework is

designed for developers who need to quickly prototype beta code in a

production environment while gaining access to important analytics

from the application.

At a first glance, many of the management tools for MSIX installation

appear to overlap our present goal of managing MSIX packages.

Unfortunately, the App Center is not intended as a production solution

for application management and should only be used with limited users.

Development and testing with the App Center is encouraged with

prototyping application releases. But when your application releases are

stable, it's good to sign your code and use one of the other delivery

methods available for MSIX packages.

79 https://appcenter.ms/

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://appcenter.ms/

MSIX Packaging Fundamentals - How Tos

 Powered by AdvancedInstaller.com 187

How Tos
In this chapter we provide answers to some topics we are frequently

asked about but have not yet covered.

How To: Setting up a recapture VM
The recapturing of an application installation needs to be performed in

a special well-prepared environment, which is typically a virtual

machine (VM) with a snapshot. The VM is always reverted to this

snapshot prior to any recapture, with the purpose of ensuring that it is a

well-known environment.

The VM should be as clean as possible. This is important because

application installers will detect whether dependencies already exist on

a machine, so specific components may be left out of the package and

not reapplied. Any software added to the VM beyond the operating

system could potentially add dependencies. Even though recaptured

packages may work fine on initial test systems (with dependencies) - as

time passes, it is possible for a package to break when landing on a

system without that dependency. Current practices usually try to keep

this image to hold just the OS and the required repackaging tools.

Note: The vendors of these tools generally limit their dependencies.

Often, organizations require anti-malware software to be present on all

systems. And unfortunately, anti-malware software adds many

dependencies that change every year. So, it is better to use the anti-

malware software that is already built into the OS while packaging, then

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - How Tos

 Powered by AdvancedInstaller.com 188

use your preferred vendor scanning tool to detect anything that

shouldn't be in the future packages.

Additionally, the OS should be tuned to reduce background activity that

could lead to capturing unnecessary (or dangerous) components. This

varies depending on the packaging purpose and the versions of the OS,

and often, it includes the following steps:

● Turning off unnecessary services, such as Windows Updates or

Windows Search, as well as other services that you will not use,

(i.e. bluetooth).

● Not joining the OS to the domain, or exempting it from the Group

Policy.

● Turning off Windows Apps updates.

● Disabling anti-malware definition updates.

● Pending system changes

Some repackaging tools, like Advanced Installer (and others),

automatically check for these rules and assist you in enforcing them -

while also managing the VM snapshot states automatically for each

new package.

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - How Tos

 Powered by AdvancedInstaller.com 189

Checking a VM state - Advanced Installer

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - How Tos

 Powered by AdvancedInstaller.com 190

How To” Common packaging

scenarios

Installing a font

Starting with the 2004 version of the Operating System, MSIX packages

may now include fonts for use on the system the application package is

deployed to. These changes are supported by changes to the

AppXManifest schemas as part of the Uap4 schema extensions.

Deploying fonts, or any other system resource, with an MSIX package,

requires entries in the AppxManifest.xml for each of the fonts. Even

when you have a recaptured and fully installed font in the package, the

font will not be available to use by any application without a declaration

in the AppXManifest file.

Installing a package that contains a font declaration instructs the OS to

register the font using the Windows Font Manager, making it available

for any application installed on the system.

Note. Removing that package will remove the font. Thanks to single

instance storage, if the same font is added by two different packages,

this is correctly handled.

For example, to add a font named “Radiant”, the font file must be

present in the package, and the following declaration has to be included

in the manifest as part of one of the “Application” elements:

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - How Tos

 Powered by AdvancedInstaller.com 191

<Applications>

 <Application Id=...............................>

 <Extensions>

 <uap4:Extension Category="windows.sharedFonts">

 <uap4:SharedFonts>

 <uap4:Font File="VFS\Fonts\Radiant.ttf"/>

 </uap4:SharedFonts>

 </uap4:Extension>

 </Extensions>

 </Application>

</Applications>

Although the fonts are added on the basis of the package, you must still

add this within one, and only one, of the Application elements. It does

not matter which application you apply the font references to.

Currently, the MSIX Packaging tool ignores captured fonts contained in

the package. When using this tool, PsfTooling can detect and provide

the syntax that you would need to manually add it to the Manifest.

With Advanced Installer Express, this can be done in just a couple of

clicks. Just go to Declarations view and configure your font, this will

ensure your package manifest is correctly generated.

For full details and a tutorial video, check Advanced Installer Blog -

Installing Fonts in MSIX Package80.

80 https://www.advancedinstaller.com/install-fonts-msix.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/install-fonts-msix.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/install-fonts-msix.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/install-fonts-msix.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - How Tos

 Powered by AdvancedInstaller.com 192

“Path” Environment Variable replacement

The most common scenario for using an environment variable is when

an application wants its main executable path to be added to the “Path”

environment variable.

A newer replacement technique, which is also used to help a process

find folders containing DLLs, is the App Paths registration in the

Windows Registry. These techniques allow a process to be started or

DLLs to be loaded without direct knowledge of the folder they are in.

MSIX packages have no direct support for any environment variables,

and the App Paths registration is not recognized either. But for

scenarios like the one above, to help with the DLLs, the Package

Support Framework has the DynamicLibraryFixup. There is a new

EnvVarsFixup to support environment variables when inside the

container, but this might not be appropriate for the Path variable

changes.

Fortunately, there is another predefined solution to allow finding an EXE

by name only introduced by the MSIX Manifest. You can also achieve

this by declaring an execution alias for the application, in the

AppxManifest.xml file.

<Applications>

 <Application

EntryPoint="Windows.FullTrustApplication"

Executable="AI_STUBS\AiStub.exe"

Id="EnvironmentVariables">

 <Extensions>

 <uap5:Extension

Category="windows.appExecutionAlias"

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - How Tos

 Powered by AdvancedInstaller.com 193

EntryPoint="Windows.FullTrustApplication"

Executable="HelloWorld.exe">

 <uap5:AppExecutionAlias>

 <uap5:ExecutionAlias

Alias="HelloWorld.exe" />

 </uap5:AppExecutionAlias>

 </uap5:Extension>

 </Extensions>

 </Application>

</Applications>

If you're using the Microsoft MSIX Packaging tool, this would be

something that you will need to manually add to the manifest. However,

if you also need the PSF and are using PsfTooling then PsfTooling will

take care of this for you automatically by different means.

With Advanced Installer Express, this can be done in a few clicks. After

adding the executable in your package, you can simply go to

Declarations view in Advanced Installer and declare your execution

alias.

For full details, check out this article Advanced Installer Blog - MSIX

Environment Variables81

Context menus

Many desktop apps offer a context menu. A context menu is a pop-up

menu that appears, for example, when a user right-clicks on a file. There

are two types of context menus:

81 https://www.advancedinstaller.com/msix-environment-variables.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-environment-variables.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-environment-variables.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - How Tos

 Powered by AdvancedInstaller.com 194

● Shell menus - which point to the application's exe that you want

to run (with or without parameters)

● Shell extensions - which point to a dll.

Adding a context menu to your application was easy with MSI. With

MSIX, Microsoft added a bit of complexity, and there are still some

missing pieces in some scenarios. Hopefully, Microsoft will address

these obstacles in the near future.

Read more about it here: Advanced Installer Blog - MSIX Context Menu82

allowElevation capability

If your Win32 application needs to ask for user elevation upon launch,

then you need to set the allowElevation capability in your

AppxManifest.xml.

 <Capabilities>

 <rescap:Capability Name="runFullTrust">

 <rescap:Capability Name="allowElevation">

 <Capabilities>

Setting this flag alone in the package manifest will not enable your

application to request for elevation. As its name implies, this flag only

allows your application to request an elevation. How does an

application request elevation rights? It does so by setting the execution

level to “requireAdministrator” from the app’s main EXE manifest.

82 https://www.advancedinstaller.com/msix-context-menu.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-context-menu.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - How Tos

 Powered by AdvancedInstaller.com 195

If your application does not have this value set in its EXE manifest, then

the “allowElevation” capability will simply be ignored and the application

will not try to automatically elevate when the user launches it. The user

can still manually run it as an admin by right clicking the application and

selecting “Run as administrator‘.

You can find more insights on this article: Advanced Installer Blog - How

to set AllowElevation flag for MSIX packages83

Note: Starting with Windows 10 20H1 this capability seems to no longer

be required for sideloaded applications.

Start Menu Entries

Compared to the MSI shortcuts concept, MSIX shortcuts make no

exception when it comes to Microsoft’s approach. When an MSIX

application is installed, it does not create a .lnk file as we are used to.

Instead, it creates only a Start Menu application entry.

Start Menu entries are managed through the AppxManifest.xml and you

can find an example of how the Application section should look like

below.

<Application Id="VLC"

 Executable="VFS\ProgramFiles\VideoLAN\VLC\clv.exe"

 EntryPoint="Windows.FullTrustApplication">

83 https://www.advancedinstaller.com/allow-elevation-msix-packages.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/allow-elevation-msix-packages.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/allow-elevation-msix-packages.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/allow-elevation-msix-packages.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - How Tos

 Powered by AdvancedInstaller.com 196

 <uap:VisualElements BackgroundColor="transparent"

 DisplayName="GP"

 </uap:VisualElements>

</Application>

Get more details here:

advancedinstaller.com/msix-shortcut84

Startup Applications

Registry entries under “Run” key or shortcuts placed in the “Startup”

folder are no longer a viable solution for MSIX packaged applications.

To configure an application to launch at startup, you need to define a

“StartupTask” in the package AppxManifest.xml, as shown below.

<Applications>

 <Application Id="TheApp" Executable="TheApp.exe"

 EntryPoint="Windows.FullTrustApplication">

 <Extensions>

 <desktop:Extension

 Category="windows.startupTask"

 Executable="VFS\TheApp.exe"

 EntryPoint="Windows.FullTrustApplication"/>

 <desktop:StartupTask TaskId="TheApp"

 Enabled="true" DisplayName="The App"/>

 </Extensions>

84 https://www.advancedinstaller.com/msix-shortcut.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-shortcut.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - How Tos

 Powered by AdvancedInstaller.com 197

 </Application>

</Applications>

Get more details here: Advanced Installer Blog - The new way of dealing

with Startup Application in your MSIX package85

Disabling Files and Registry Virtualization

The MSIX container provides default virtualization for any files found

under the VFS folder and to any registry entry found under a registry

path included in the registry.dat hive from the MSIX package.

To disable the registry and file redirections, the following properties

must be added in the AppxManifest.xml:

● desktop6:RegistryWriteVirtualization: Indicates whether

virtualization for the registry is enabled for the desktop

application.

● desktop6:FileSystemWriteVirtualization: Indicates whether

virtualization for the file system is enabled for the desktop

application.

The above properties should be included inside the Properties element

of the manifest. For example:

<Properties>

<desktop6:FileSystemWriteVirtualization>disabled</

desktop6:FileSystemWriteVirtualization>

85 https://www.advancedinstaller.com/startup-programs-msix.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/startup-programs-msix.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/startup-programs-msix.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - How Tos

 Powered by AdvancedInstaller.com 198

<desktop6:RegistryWriteVirtualization>disabled</

desktop6:RegistryWriteVirtualization>

</Properties>

These two capabilities appear to be intended only for debugging

purposes and are unlikely to be useful for production packages.

Additional details on these settings may be found at Advanced Installer

- MSIX Disable Registry File Redirection86.

86 https://www.advancedinstaller.com/msix-disable-registry-file-
redirection.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-disable-registry-file-redirection.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msix-disable-registry-file-redirection.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Going Forward

 Powered by AdvancedInstaller.com 199

Going Forward
In 1999 Microsoft delivered the first MSI packages. Since then,

Windows Installer has become the pillar of application packaging and

deployment. The MSI is still the most used packaging technology for

Windows applications, but the evolution of operating systems has

outpaced the, mostly-ignored, Windows Installer technology. MSIX is

well positioned to become the replacement packaging and delivery

vehicle going forward.

Within modern OSes containerization is no longer an obscure topic. For

more than a decade App-V has been the #1 virtualization solution for

enterprise environments, accompanied by ThinApp and others (many

discontinued).

OS-es for mobile devices have been running virtualized apps from day

one. Starting from a clean slate was a big advantage for iOS and

Android, since they didn’t have to go through all the trouble of helping

developers migrate apps to a new packaging and runtime environment,

as MSIX has to do today, with millions of Win32 and .NET applications.

As with every new technology, caution is advised. MSIX is still

developing, there are many challenges to tackle and a detailed

evaluation and planning process should be executed when shifting to

MSIX87.

87 https://www.advancedinstaller.com/msi-vs-msix.html

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msi-vs-msix.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msi-vs-msix.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://www.advancedinstaller.com/msi-vs-msix.html?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals

MSIX Packaging Fundamentals - Going Forward

 Powered by AdvancedInstaller.com 200

This will be a long journey, but with important benefits for those that

choose to adopt MSIX. And each year, this list of benefits keeps

growing, for both ISVs and enterprises.

The MSIX story is not complete today. Upending decades of well-

established formats and runtimes is not easy. And planning for what we

will need for the next decade or two takes careful consideration.

Microsoft chose not to design it all up front and give us the complete

technology that MSIX will become. Instead, they delivered a part of what

we know we need now, and plan to add to it over time.

You have an opportunity to contribute to this plan. Please join your

colleagues by participating in the discussions in the MSIX Technical

Communities88 and contribute your ideas.

88 https://techcommunity.microsoft.com/t5/msix/ct-p/MSIX

https://www.advancedinstaller.com/?utm_source=AI_Distribution&utm_medium=ebook&utm_campaign=MSIX_Packaging_Fundamentals
https://techcommunity.microsoft.com/t5/msix/ct-p/MSIX
https://techcommunity.microsoft.com/t5/msix/ct-p/MSIX

MSIX Packaging

Fundamentals

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner,

except for the use of brief quotations in a book review.

